We study theoretically the effect of size difference and that of gravity in the phase behavior of a binary mixture of patchy particles. The species, 2A and 3B, have two A and three B patches, respectively, and only bonds between patches A and B (AB bonds) are allowed. This model describes colloidal systems where the aggregation of particles (3B) is mediated and controlled by a second species, the linkers (2A) to which they bind strongly. Thermodynamic calculations are performed using Wertheim’s perturbation theory with a hard sphere reference term that accounts for the difference in the size of the two species. Percolation lines are determined employing a generalized Flory–Stockmayer theory, and the effects of gravity are included through a local density approximation. The bulk phase diagrams are calculated, and all the stacking sequences generated in the presence of gravity are determined and classified in a stacking diagram. The relative size of the particles can be used to control the phase behavior of the mixture. An increase in the size of particles 3B, relative to the size of the linkers 2A, is found to promote mixing while keeping the percolating structures and, in certain cases, leads to changes in the stacking sequence under gravity.

1.
M.
Kamp
,
B.
de Nijs
,
M. N.
van der Linden
,
I.
de Feijter
,
M. J.
Lefferts
,
A.
Aloi
,
J.
Griffiths
,
J. J.
Baumberg
,
I. K.
Voets
, and
A.
van Blaaderen
,
Langmuir
36
,
2403
(
2020
).
2.
V. N.
Manoharan
,
Science
349
,
1253751
(
2015
).
3.
E.
Bianchi
,
J.
Largo
,
P.
Tartaglia
,
E.
Zaccarelli
, and
F.
Sciortino
,
Phys. Rev. Lett.
97
,
168301
(
2006
).
4.
J.
Russo
,
J. M.
Tavares
,
P. I. C.
Teixeira
,
M. M.
Telo da Gama
, and
F.
Sciortino
,
Phys. Rev. Lett.
106
,
085703
(
2011
).
5.
L.
Rovigatti
,
J. M.
Tavares
, and
F.
Sciortino
,
Phys. Rev. Lett.
111
,
168302
(
2013
).
6.
A. L.
Hiddessen
,
S. D.
Rodgers
,
D. A.
Weitz
, and
D. A.
Hammer
,
Langmuir
16
,
9744
(
2000
).
7.
V. T.
Milam
,
A. L.
Hiddessen
,
J. C.
Crocker
,
D. J.
Graves
, and
D. A.
Hammer
,
Langmuir
19
,
10317
(
2003
).
8.
B. A.
Lindquist
,
R. B.
Jadrich
,
D. J.
Milliron
, and
T. M.
Truskett
,
J. Chem. Phys.
145
,
074906
(
2016
).
9.
Z. M.
Sherman
,
A. M.
Green
,
M. P.
Howard
,
E. V.
Anslyn
,
T. M.
Truskett
, and
D. J.
Milliron
,
Acc. Chem. Res.
54
,
798
(
2021
).
10.
I. D.
Stoev
,
T.
Cao
,
A.
Caciagli
,
J.
Yu
,
C.
Ness
,
R.
Liu
,
R.
Ghosh
,
T.
O’Neill
,
D.
Liu
, and
E.
Eiser
,
Soft Matter
16
,
990
(
2020
).
11.
N.
Ghofraniha
,
P.
Andreozzi
,
J.
Russo
,
C.
La Mesa
, and
F.
Sciortino
,
J. Phys. Chem. B
113
,
6775
(
2009
).
12.
G. C.
Antunes
,
C. S.
Dias
,
M. M.
Telo da Gama
, and
N. A. M.
Araújo
,
Soft Matter
15
,
3712
(
2019
).
13.
D.
de las Heras
,
J. M.
Tavares
, and
M. M.
Telo da Gama
,
J. Chem. Phys.
134
,
104904
(
2011
).
14.
D.
de las Heras
,
J. M.
Tavares
, and
M. M.
Telo da Gama
,
Soft Matter
7
,
5615
(
2011
).
15.
R.
Piazza
,
Rep. Prog. Phys.
77
,
056602
(
2014
).
16.
H. H.
Wensink
and
H. N. W.
Lekkerkerker
,
Europhys. Lett.
66
,
125
(
2004
).
17.
D.
de las Heras
and
M.
Schmidt
,
Soft Matter
9
,
8636
(
2013
).
18.
F. M.
van der Kooij
and
H. N. W.
Lekkerkerker
,
Phys. Rev. Lett.
84
,
781
(
2000
).
19.
L.
Luan
,
W.
Li
,
S.
Liu
, and
D.
Sun
,
Langmuir
25
,
6349
(
2009
).
20.
D.
de las Heras
,
N.
Doshi
,
T.
Cosgrove
,
J.
Phipps
,
D. I.
Gittins
,
J. S.
van Duijneveldt
, and
M.
Schmidt
,
Sci. Rep.
2
,
789
(
2012
).
21.
D.
de las Heras
and
M.
Schmidt
,
J. Phys.: Condens. Matter
27
,
194115
(
2015
).
22.
T.
Drwenski
,
P.
Hooijer
, and
R.
van Roij
,
Soft Matter
12
,
5684
(
2016
).
23.
G.
Avvisati
,
T.
Dasgupta
, and
M.
Dijkstra
,
ACS Nano
11
,
7702
(
2017
).
24.
D.
de las Heras
,
L. L.
Treffenstädt
, and
M.
Schmidt
,
Phys. Rev. E
93
,
030601
(
2016
).
25.
T.
Geigenfeind
and
D.
de las Heras
,
J. Phys.: Condens. Matter
29
,
064006
(
2016
).
26.
P. I. C.
Teixeira
and
J. M.
Tavares
,
Curr. Opin. Colloid Interface Sci.
30
,
16
(
2017
).
27.
W.
Bol
,
Mol. Phys.
45
,
605
(
1982
).
28.
N.
Kern
and
D.
Frenkel
,
J. Chem. Phys.
118
,
9882
(
2003
).
29.
F.
Sciortino
,
E.
Bianchi
,
J. F.
Douglas
, and
P.
Tartaglia
,
J. Chem. Phys.
126
,
194903
(
2007
).
30.
M. S.
Wertheim
,
J. Stat. Phys.
35
,
35
(
1984
).
31.
A.
Santos
,
S. B.
Yuste
, and
M.
López de Haro
,
J. Chem. Phys.
117
,
5785
(
2002
).
32.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
33.
M. S.
Wertheim
,
J. Stat. Phys.
42
,
477
492
(
1986
).
34.
W. G.
Chapman
,
G.
Jackson
, and
K. E.
Gubbins
,
Mol. Phys.
65
,
1057
(
1988
).
35.
L.
Rovigatti
,
D.
de las Heras
,
J. M.
Tavares
,
M. M.
Telo da Gama
, and
F.
Sciortino
,
J. Chem. Phys.
138
,
164904
(
2013
).
36.
M.
Doi
,
Soft Matter Physics
(
Oxford University Press
,
2013
).
37.
J. S.
Rowlinson
and
F. L.
Swinton
,
Liquids and Liquid Mixtures
, 3rd ed. (
Butterworth-Heinemann
,
1982
), pp.
86
131
.
38.
P. J.
Flory
,
J. Am. Chem. Soc.
63
,
3083
(
1941
).
39.
W. H.
Stockmayer
,
J. Chem. Phys.
11
,
45
(
1943
).
40.
J. M.
Tavares
,
P. I. C.
Teixeira
, and
M. M.
Telo da Gama
,
Phys. Rev. E
81
,
010501
(
2010
).
41.
P. H.
van Konynenburg
and
R. L.
Scott
,
Philos. Trans. R. Soc. London, Ser. A
298
,
495
(
1980
).
42.
M. P.
Howard
,
Z. M.
Sherman
,
A. N.
Sreenivasan
,
S. A.
Valenzuela
,
E. V.
Anslyn
,
D. J.
Milliron
, and
T. M.
Truskett
,
J. Chem. Phys.
154
,
074901
(
2021
).
43.
M. P.
Howard
,
R. B.
Jadrich
,
B. A.
Lindquist
,
F.
Khabaz
,
R. T.
Bonnecaze
,
D. J.
Milliron
, and
T. M.
Truskett
,
J. Chem. Phys.
151
,
124901
(
2019
).
You do not currently have access to this content.