The thermal behaviors of ligand-protected metal clusters, [Au9(PPh3)8]3+ and [MAu8(PPh3)8]2+ (M = Pd, Pt) with a crown-motif structure, were investigated to determine the effects of the gas composition, single-atom doping, and counter anions on the thermal stability of these clusters. We successfully synthesized crown-motif [PdAu8(PPh3)8][HPMo12O40] (PdAu8PMo12) and [PtAu8(PPh3)8][HPMo12O40] (PtAu8PMo12) salts with a cesium-chloride-type structure, which is the same as the [Au9(PPh3)8][PMo12O40] (Au9PMo12) structure. Thermogravimetry-differential thermal analysis/mass spectrometry analysis revealed that the crown-motif structure of Au9PMo12 was decomposed at ∼475 K without weight loss to form Au nanoparticles. After structural decomposition, the ligands were desorbed from the sample. The ligand desorption temperature of Au9PMo12 increased under 20% O2 conditions because of the formation of Au nanoparticles and stronger interaction of the formed O=PPh3 than PPh3. The Pd and Pt single-atom doping improved the thermal stability of the clusters. This improvement was due to the formation of a large bonding index of M–Au and a change in Au–PPh3 bonding energy by heteroatom doping. Moreover, we found that the ligand desorption temperatures were also affected by the type of counter anions, whose charge and size influence the localized Coulomb interaction and cluster packing between the cationic ligand-protected metal clusters and counter anions.

1.
R.
Jin
,
G.
Li
,
S.
Sharma
,
Y.
Li
, and
X.
Du
, “
Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures
,”
Chem. Rev.
121
,
567
(
2021
).
2.
H.
Häkkinen
, “
The gold–sulfur interface at the nanoscale
,”
Nat. Chem.
4
,
443
(
2012
).
3.
T.
Tsukuda
, “
Toward an atomic-level understanding of size-specific properties of protected and stabilized gold clusters
,”
Bull. Chem. Soc. Jpn.
85
,
151
(
2012
).
4.
A.
Mathew
and
T.
Pradeep
, “
Noble metal clusters: Applications in energy, environment, and biology
,”
Part. Part. Syst. Charact.
31
,
1017
(
2014
).
5.
K.
Konishi
, “
Phosphine-coordinated pure-gold clusters: Diverse geometrical structures and unique optical properties/responses
,”
Struct. Bonding
161
,
49
(
2014
).
6.
A.
Fernando
,
K. L. D. M.
Weerawardene
,
N. V.
Karimova
, and
C. M.
Aikens
, “
Quantum mechanical studies of large metal, metal oxide, and metal chalcogenide nanoparticles and clusters
,”
Chem. Rev.
115
,
6112
(
2015
).
7.
R.
Jin
,
C.
Zeng
,
M.
Zhou
, and
Y.
Chen
, “
Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities
,”
Chem. Rev.
116
,
10346
(
2016
).
8.
W.
Kurashige
,
Y.
Niihori
,
S.
Sharma
, and
Y.
Negishi
, “
Precise synthesis, functionalization and application of thiolate-protected gold clusters
,”
Coord. Chem. Rev.
320-321
,
238
(
2016
).
9.
J.
Fang
,
B.
Zhang
,
Q.
Yao
,
Y.
Yang
,
J.
Xie
, and
N.
Yan
, “
Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters
,”
Coord. Chem. Rev.
322
,
1
(
2016
).
10.
Y.
Zhu
,
H.
Qian
, and
R.
Jin
, “
An atomic‐level Strategy for unraveling gold nanocatalysis from the perspective of Aun(SR)m nanoclusters
,”
Chem.-Eur. J.
16
,
11455
(
2010
).
11.
X.
Nie
,
H.
Qian
,
Q.
Ge
,
H.
Xu
, and
R.
Jin
, “
CO oxidation catalyzed by oxide-supported Au25(SR)18 nanoclusters and identification of perimeter sites as active centers
,”
ACS Nano
6
,
6014
(
2012
).
12.
G.
Li
,
D.
Jiang
,
C.
Liu
,
C.
Yu
, and
R.
Jin
, “
Oxide-supported atomically precise gold nanocluster for catalyzing Sonogashira cross-coupling
,”
J. Catal.
306
,
177
(
2013
).
13.
Z.
Wu
and
R.
Jin
, “
Stability of the two Au–S binding modes in Au25(SG)18 nanoclusters probed by NMR and optical spectroscopy
,”
ACS Nano
3
,
2036
(
2009
).
14.
M. R.
Narouz
,
K. M.
Osten
,
P. J.
Unsworth
,
R. W. Y.
Man
,
K.
Salorinne
,
S.
Takano
,
R.
Tomihara
,
S.
Kaappa
,
S.
Malola
,
C.-T.
Dinh
,
J. D.
Padmos
,
K.
Ayoo
,
P. J.
Garrett
,
M.
Nambo
,
J. H.
Horton
,
E. H.
Sargent
,
H.
Häkkinen
,
T.
Tsukuda
, and
C. M.
Crudden
, “
N-heterocyclic carbene-functionalized magic-number gold nanoclusters
,”
Nat. Chem.
11
,
419
(
2019
).
15.
S.
Yamazoe
,
T.
Yoskamtorn
,
S.
Takano
,
S.
Yadnum
,
J.
Limtrakul
, and
T.
Tsukuda
, “
Controlled synthesis of carbon-supported gold clusters for rational catalyst design
,”
Chem. Rec.
16
,
2338
(
2016
).
16.
T.
Kawawaki
,
Y.
Kataoka
,
M.
Hirata
,
Y.
Akinaga
,
R.
Takahata
,
K.
Wakamatsu
,
Y.
Fujiki
,
M.
Kataoka
,
S.
Kikkawa
,
A. S.
Alotabi
,
S.
Hossain
,
D. J.
Osborn
,
T.
Teranishi
,
G. G.
Andersson
,
G. F.
Metha
,
S.
Yamazoe
, and
Y.
Negishi
, “
Creation of high-performance heterogeneous photocatalysts by controlling ligand desorption and particle size of gold nanocluster
,”
Angew. Chem., Int. Ed.
(published online 2021).
17.
Y.
Negishi
,
N.
Shimizu
,
K.
Funai
,
R.
Kaneko
,
K.
Wakamatsu
,
A.
Harasawa
,
S.
Hossain
,
M. E.
Schuster
,
D.
Ozkaya
,
W.
Kurashige
,
T.
Kawawaki
,
S.
Yamazoe
, and
S.
Nagaoka
, “
γ-Alumina-supported Pt17 cluster: Controlled loading, geometrical structure, and size-specific catalytic activity for carbon monoxide and propylene oxidation
,”
Nanoscale Adv.
2
,
669
(
2020
).
18.
W.
Kurashige
,
R.
Hayashi
,
K.
Wakamatsu
,
Y.
Kataoka
,
S.
Hossain
,
A.
Iwase
,
A.
Kudo
,
S.
Yamazoe
, and
Y.
Negishi
, “
Atomic-level understanding of the effect of heteroatom doping of the cocatalyst on water-splitting activity in AuPd or AuPt alloy cluster-loaded BaLa4Ti4O15
,”
ACS Appl. Energy Mater.
2
,
4175
(
2019
).
19.
W.
Kurashige
,
R.
Kumazawa
,
D.
Ishii
,
R.
Hayashi
,
Y.
Niihori
,
S.
Hossain
,
L. V.
Nair
,
T.
Takayama
,
A.
Iwase
,
S.
Yamazoe
,
T.
Tsukuda
,
A.
Kudo
, and
Y.
Negishi
, “
Au25-loaded BaLa4Ti4O15 water-splitting photocatalyst with enhanced activity and durability produced using new chromium oxide shell formation method
,”
J. Phys. Chem. C
122
,
13669
(
2018
).
20.
M.
Urushizaki
,
H.
Kitazawa
,
S.
Takano
,
R.
Takahata
,
S.
Yamazoe
, and
T.
Tsukuda
, “
Synthesis and catalytic application of Ag44 clusters supported on mesoporous carbon
,”
J. Phys. Chem. C
119
,
27483
(
2015
).
21.
T.
Yoskamtorn
,
S.
Yamazoe
,
R.
Takahata
,
J.
Nishigaki
,
A.
Thivasasith
,
J.
Limtrakul
, and
T.
Tsukuda
, “
Thiolate-mediated selectivity control in aerobic alcohol oxidation
,”
ACS Catal.
4
,
3696
(
2014
).
22.
Z.
Shahin
,
H.
Jin
,
R.
Chiriac
,
N.
Essayem
,
F.
Rataboul
, and
A.
Demessence
, “
Thermal control of the defunctionalization of supported Au25(glutathione)18 catalysts for benzyl alcohol oxidation
,”
Beilstein J. Nanotechnol.
10
,
228
(
2019
).
23.
R. H.
Adnan
and
V. B.
Golovko
, “
Benzyl alcohol oxidation using gold catalysts derived from Au8 clusters on TiO2
,”
Catal. Lett.
149
,
449
(
2019
).
24.
R. H.
Adnan
,
G. G.
Andersson
,
M. I. J.
Polson
,
G. F.
Metha
, and
V. B.
Golovko
, “
Factors influencing the catalytic oxidation of benzyl alcohol using supported phosphine-capped gold nanoparticles
,”
Catal. Sci. Technol.
5
,
1323
(
2015
).
25.
F. A.
Vollenbroek
,
J. J.
Bour
, and
J. W. A.
van der Veden
, “
Gold-phosphine cluster compounds: The reactions of [Au9L8]3+ (L = PPh3) with L, SCN and Cl to [Au8L8]2+ (Au11L8(SCN)2]+ and [Au11L8Cl2]+
,”
Recl. Trav. Chim. Pays-Bas
99
,
137
(
1980
).
26.
S.
Takano
,
H.
Hirai
,
S.
Muramatsu
, and
T.
Tsukuda
, “
Hydride-mediated controlled growth of a bimetallic (Pd@Au8)2+ superatom to a hydride-doped (HPd@Au10)3+ superatom
,”
J. Am. Chem. Soc.
140
,
12314
(
2018
).
27.
J. J.
Bour
,
R. P. F.
Kanters
,
P. P. J.
Schlebos
,
W. P.
Bosman
,
H.
Behm
,
P. T.
Beurskens
, and
J. J.
Steggerda
, “
Hetero-metallic clusters. Synthesis and characterization of [PtAu8(PPh3)8] (NO3)2 and [HPtAu7(PPh3)8](NO3)2
,”
Recl. Trav. Chim. Pays-Bas
106
,
157
(
1987
).
28.
P.
Braunstein
,
H.
Lehner
, and
D.
Matt
, “
A platinum-gold cluster: Chloro-1κCl-bis(triethylphosphine-1κP)bis(triethyl-phosphine)-2κP, 3κP-triangulo-digold-platinum(1+) trifluoromethanesulfonate
,”
Inorg. Synth.
27
,
218
(
1990
).
29.
A. M.
Mueting
,
B. D.
Alexander
,
P. D.
Boyle
,
A. L.
Casalnuovo
,
L. N.
Ito
,
B. J.
Johnson
,
L. H.
Pignolet
,
M.
Leeaphon
,
K. E.
Meyer
,
R. A.
Walton
,
D. M.
Heinekey
, and
T. G. P.
Harper
, “
Mixed-metal-gold phosphine cluster compounds
,”
Inorg. Synth.
29
,
279
(
1992
).
30.
R.
Ugo
,
F.
Cariati
,
G.
La Monica
, and
J. J.
Mrowca
, “
Tris-and tetrakis(triphenyl-phosphine)platinum(0)
,”
Inorg. Synth.
11
,
105
(
1968
).
31.
S.
Yamazoe
,
S.
Matsuo
,
S.
Muramatsu
,
S.
Takano
,
K.
Nitta
, and
T.
Tsukuda
, “
Suppressing isomerization of phosphine-protected Au9 cluster by bond stiffening induced by single Pd atom substitution
,”
Inorg. Chem.
56
,
8319
(
2017
).
32.
M.
Schulz-Dobrick
and
M.
Jansen
, “
Supramolecular intercluster compounds consisting of gold clusters and Keggin anions
,”
Eur. J. Inorg. Chem.
2006
,
4498
.
33.
J.
Fuchs
,
A.
Thiele
, and
R.
Palm
, “
‘γ‐PW12O403−’, A heteropolyanion with clathrate character
,”
Angew. Chem., Int. Ed.
21
,
789
(
1982
).
34.
M.
Schulz-Dobrick
and
M.
Jansen
, “
Synthesis and characterization of intercluster compounds consisting of various gold clusters and differently charged Keggin anions
,”
Z. Anorg. Allg. Chem.
634
,
2880
(
2008
).
35.
C.
Kabuto
,
S.
Akine
,
T.
Nemoto
, and
E.
Kwon
, “
Release of software (Yadokari-XG 2009) for crystal structure analyses
,”
J. Crystallogr. Soc. Jpn.
51
,
218
(
2009
).
36.
H.
Asakura
,
S.
Yamazoe
,
T.
Misumi
,
A.
Fujita
,
T.
Tsukuda
, and
T.
Tanaka
, “
xTunes: A new XAS processing tool for detailed and on-the-fly analysis
,”
Radiat. Phys. Chem.
175
,
108270
(
2020
).
37.
I. V. G.
Graf
,
J. W.
Bacon
,
M. B.
Consugar
,
M. E.
Curley
,
L. N.
Ito
, and
L. H.
Pignolet
, “
Cluster chemistry on surfaces: characterization and catalytic studies of phosphine-stabilized platinum–gold clusters on silica and alumina supports
,”
Inorg. Chem.
35
,
689
(
1996
).
38.
L. N.
Ito
,
B. J.
Johnson
,
A. M.
Mueting
, and
L. H.
Pignolet
, “
Heterobimetallic gold-palladium phosphine cluster complexes. X-ray crystal and molecular structure of [Au8Pd(PPh3)8](NO3)2
,”
Inorg. Chem.
28
,
2026
(
1989
).

Supplementary Material

You do not currently have access to this content.