We propose a neural evolution structure (NES) generation methodology combining artificial neural networks and evolutionary algorithms to generate high entropy alloy structures. Our inverse design approach is based on pair distribution functions and atomic properties and allows one to train a model on smaller unit cells and then generate a larger cell. With a speed-up factor of ∼1000 with respect to the special quasi-random structures (SQSs), the NESs dramatically reduce computational costs and time, making possible the generation of very large structures (over 40 000 atoms) in few hours. Additionally, unlike the SQSs, the same model can be used to generate multiple structures with the same fractional composition.
REFERENCES
1.
J. J.
Kruzic
, Adv. Eng. Mater.
18
, 1308
(2016
).2.
M.-H.
Tsai
and J.-W.
Yeh
, Mater. Res. Lett.
2
, 107
(2014
).3.
J.-W.
Yeh
, “Overview of high-entropy alloys
,” in , edited by M. C.
Gao
, J.-W.
Yeh
, P. K.
Liaw
, and Y.
Zhang
(Springer International Publishing
, Cham
, 2016
), pp. 1–19.4.
S.
Martin
, K.
Dennis
, C.
Zlotea
, and J.
Ulf
, Sci. Rep.
6
, 36770
(2016
).5.
A.
Amiri
and R.
Shahbazian-Yassar
, J. Mater. Chem. A
9
, 782
(2021
).6.
C.
Nyby
, X.
Guo
, J. E.
Saal
, S.-C.
Chien
, A. Y.
Gerard
, H.
Ke
, T.
Li
, P.
Lu
, C.
Oberdorfer
, S.
Sahu
, S.
Li
, C. D.
Taylor
, W.
Windl
, J. R.
Scully
, and G. S.
Frankel
, Sci. Data
8
, 58
(2021
).7.
E. J.
Pickering
, A. W.
Carruthers
, P. J.
Barron
, S. C.
Middleburgh
, D. E. J.
Armstrong
, and A. S.
Gandy
, Entropy
23
, 98
(2021
).8.
Y. F.
Ye
, Q.
Wang
, J.
Lu
, C. T.
Liu
, and Y.
Yang
, Mater. Today
19
, 349
(2016
).9.
Y.
Zhou
, D.
Zhou
, X.
Jin
, L.
Zhang
, X.
Du
, and B.
Li
, Sci. Rep.
8
, 1236
(2018
).10.
Y.
Ikeda
, B.
Grabowski
, and F.
Körmann
, Mater. Charact.
147
, 464
(2019
).11.
E. P.
George
, D.
Raabe
, and R. O.
Ritchie
, Nat. Rev. Mater.
4
, 515
(2019
).12.
13.
Z.
Li
, F.
Körmann
, B.
Grabowski
, J.
Neugebauer
, and D.
Raabe
, Acta Mater.
136
, 262
(2017
).14.
L.
Rogal
, P.
Bobrowski
, F.
Körmann
, S.
Divinski
, F.
Stein
, and B.
Grabowski
, Sci. Rep.
7
, 2209
(2017
).15.
Y.
Lederer
, C.
Toher
, K. S.
Vecchio
, and S.
Curtarolo
, Acta Mater.
159
, 364
(2018
).16.
J.
Hu
, J.
Zhang
, J.
Zhang
, H.
Xiao
, L.
Xie
, H.
Shen
, P.
Li
, G.
Sun
, and X.
Zu
, Inorg. Chem.
60
, 1388
(2021
).17.
J. D.
Strother
and C. Z.
Hargather
, Data Brief
34
, 106670
(2021
).18.
D.
Ma
, B.
Grabowski
, F.
Körmann
, J.
Neugebauer
, and D.
Raabe
, Acta Mater.
100
, 90
(2015
).19.
F.
Körmann
, D.
Ma
, D. D.
Belyea
, M. S.
Lucas
, C. W.
Miller
, B.
Grabowski
, and M. H. F.
Sluiter
, App. Phys. Lett.
107
, 142404
(2015
).20.
M.
Troppenz
, S.
Rigamonti
, and C.
Draxl
, Chem. Mater.
29
, 2414
–2424
(2017
).21.
D.
Chattaraj
and C.
Majumder
, J. Alloys Compd.
732
, 160
(2018
).22.
D.
Chen
, S.
Zhao
, J.
Sun
, P.
Tai
, Y.
Sheng
, Y.
Zhao
, G.
Yeli
, W.
Lin
, S.
Liu
, W.
Kai
et al., J. Nucl. Mater.
526
, 151747
(2019
).23.
N.
Zhao
, Y. F.
Zhu
, and Q.
Jiang
, J. Mater. Chem. C
6
, 2854
(2018
).24.
M.
Rostami
, M.
Afkani
, M. R.
Torkamani
, and F.
Kanjouri
, Mater. Chem. Phys.
248
, 122923
(2020
).25.
M. C.
Gao
and D. E.
Alman
, Entropy
15
, 4504
(2013
).26.
D.
Wang
, L.
Liu
, W.
Huang
, and H. L.
Zhuang
, J. Appl. Phys.
126
, 225703
(2019
).27.
B.
Yin
and W. A.
Curtin
, npj Comput. Mater.
5
, 14
(2019
).28.
J.
Hu
, J.
Zhang
, H.
Xiao
, L.
Xie
, H.
Shen
, P.
Li
, J.
Zhang
, H.
Gong
, and X.
Zu
, Inorg. Chem.
59
, 9774
(2020
).29.
M. C.
Gao
, C.
Niu
, C.
Jiang
, and D. L.
Irving
, High-Entropy Alloys
(Springer
, 2016
), pp. 333
–368
.30.
M. C.
Gao
, P.
Gao
, J. A.
Hawk
, L.
Ouyang
, D. E.
Alman
, and M.
Widom
, J. Mater. Res.
32
, 3627
(2017
).31.
X. L.
Ren
, P. H.
Shi
, W. W.
Zhang
, X. Y.
Wu
, Q.
Xu
, and Y. X.
Wang
, Acta Mater.
180
, 189
(2019
).32.
A.
Zunger
, S.-H.
Wei
, L. G.
Ferreira
, and J. E.
Bernard
, Phys. Rev. Lett.
65
, 353
(1990
).33.
S.-H.
Wei
, L. G.
Ferreira
, J. E.
Bernard
, and A.
Zunger
, Phys. Rev. B
42
, 9622
(1990
).34.
M.
Ångqvist
, W. A.
Muñoz
, J. M.
Rahm
, E.
Fransson
, C.
Durniak
, P.
Rozyczko
, T. H.
Rod
, and P.
Erhart
, Adv. Theory Simul.
2
, 1900015
(2019
).35.
A.
van De Walle
, P.
Tiwary
, M.
De Jong
, D. L.
Olmsted
, M.
Asta
, A.
Dick
, D.
Shin
, Y.
Wang
, L.-Q.
Chen
, and Z.-K.
Liu
, Calphad
42
, 13
(2013
).36.
A.
van de Walle
, M.
Asta
, and G.
Ceder
, Calphad
26
, 539
–553
(2002
).37.
K.
Okhotnikov
, T.
Charpentier
, and S.
Cadars
, J. Cheminf.
8
, 17
(2016
).38.
C.
Wen
, Y.
Zhang
, C.
Wang
, D.
Xue
, Y.
Bai
, S.
Antonov
, L.
Dai
, T.
Lookman
, and Y.
Su
, Acta Mater.
170
, 109
(2019
).39.
C. T.
Chen
and G. X.
Gu
, Adv. Sci.
7
, 1902607
(2020
).40.
J. M.
Rickman
, H. M.
Chan
, M. P.
Harmer
, J. A.
Smeltzer
, C. J.
Marvel
, A.
Roy
, and G.
Balasubramanian
, Nat. Commun.
10
, 2618
(2019
).41.
K.
Kaufmann
, D.
Maryanovsky
, W. M.
Mellor
, C.
Zhu
, A. S.
Rosengarten
, T. J.
Harrington
, C.
Oses
, C.
Toher
, S.
Curtarolo
, and K. S.
Vecchio
, npj Comput. Mater.
6
, 42
(2020
).42.
J. M.
Rickman
, G.
Balasubramanian
, C. J.
Marvel
, H. M.
Chan
, and M.-T.
Burton
, J. Appl. Phys.
128
, 221101
(2020
).43.
K.
Ryan
, J.
Lengyel
, and M.
Shatruk
, J. Am. Chem. Soc.
140
, 10158
(2018
).44.
H.
Liang
, V.
Stanev
, A. G.
Kusne
, and I.
Takeuchi
, Phys. Rev. Mater.
4
, 123802
(2020
).45.
A. O.
Lyakhov
, A. R.
Oganov
, and M.
Valle
, “Crystal structure prediction using evolutionary approach
,” in Modern Methods of Crystal Structure Prediction
(John Wiley & Sons, Ltd.
, 2010
), Chap. 7, pp. 147
–180
.46.
Computational Materials Discovery
, edited by A. R.
Oganov
, G.
Saleh
, and A. G.
Kvashnin
(The Royal Society of Chemistry
, 2019
), Chap. 2, pp. 15
–65
.47.
E. V.
Podryabinkin
, E. V.
Tikhonov
, A. V.
Shapeev
, and A. R.
Oganov
, Phys. Rev. B
99
, 064114
(2019
).48.
R.
Singh
, A.
Sharma
, P.
Singh
, G.
Balasubramanian
, and D. D.
Johnson
, Nat. Comput. Sci.
1
, 54
(2021
).49.
S.
Kim
, J.
Noh
, G. H.
Gu
, A.
Aspuru-Guzik
, and Y.
Jung
, ACS Cent. Sci.
6
, 1412
(2020
).50.
A.
Zunger
, Nat. Rev. Chem.
2
, 0121
(2018
).51.
K.
Ryczko
, P.
Darancet
, and I.
Tamblyn
, J. Phys. Chem. C
124
, 26117
(2020
).52.
S.
Plimpton
, J. Comput. Phys.
117
, 1
(1995
).53.
D.
Farkas
and A.
Caro
, J. Mater. Res.
33
, 3218
(2018
).54.
E.
Polak
and G.
Ribiere
, ESAIM: Math. Modell. Numer. Anal.
3
, 35
(1969
).Published under a nonexclusive license by AIP Publishing.
2021
Crown
You do not currently have access to this content.