Macromolecular crowding is a feature of cellular and cell-free systems that, through depletion effects, can impact the interactions of semiflexible biopolymers with surfaces. In this work, we use computer simulations to study crowding-induced adsorption of semiflexible polymers on otherwise repulsive surfaces. Crowding particles are modeled explicitly, and we investigate the interplay between the bending stiffness of the polymer and the volume fraction and size of crowding particles. Adsorption to flat surfaces is promoted by stiffer polymers, smaller crowding particles, and larger volume fractions of crowders. We characterize transitions from non-adsorbed to partially and strongly adsorbed states as a function of bending stiffness. The crowding-induced transitions occur at smaller values of the bending stiffness as the volume fraction of crowders increases. Concomitant effects on the size and shape of the polymer are reflected by crowding- and stiffness-dependent changes to the radius of gyration. For various polymer lengths, we identify a critical crowding fraction for adsorption and analyze its scaling behavior in terms of polymer stiffness. We also consider crowding-induced adsorption in spherical confinement and identify a regime in which increasing the bending stiffness induces desorption. The results of our simulations shed light on the interplay of crowding and bending stiffness on the spatial organization of biopolymers in encapsulated cellular and cell-free systems.

1.
S.
Asakura
and
F.
Oosawa
, “
On interaction between two bodies immersed in a solution of macromolecules
,”
J. Chem. Phys.
22
,
1255
1256
(
1954
).
2.
K.
Binder
,
P.
Virnau
, and
A.
Statt
, “
Perspective: The Asakura Oosawa model: A colloid prototype for bulk and interfacial phase behavior
,”
J. Chem. Phys.
141
,
140901
(
2014
).
3.
R.
Tuinier
and
H. N.
Lekkerkerker
,
Colloids and the Depletion Interaction
(
Springer Netherlands
,
2011
).
4.
D.
Marenduzzo
,
K.
Finan
, and
P. R.
Cook
, “
The depletion attraction: An underappreciated force driving cellular organization
,”
J. Cell Biol.
175
,
681
686
(
2006
).
5.
D.
Marenduzzo
,
C.
Micheletti
, and
P. R.
Cook
, “
Entropy-driven genome organization
,”
Biophys. J.
90
,
3712
3721
(
2006
).
6.
J.
Pelletier
,
K.
Halvorsen
,
B.-Y.
Ha
,
R.
Paparcone
,
S. J.
Sandler
,
C. L.
Woldringh
,
W. P.
Wong
, and
S.
Jun
, “
Physical manipulation of the Escherichia coli chromosome reveals its soft nature
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
E2649
E2656
(
2012
).
7.
O. L.
Kantidze
and
S. V.
Razin
, “
Weak interactions in higher-order chromatin organization
,”
Nucleic Acids Res.
48
,
4614
4626
(
2020
).
8.
C.
Jeon
,
Y.
Jung
, and
B.-Y.
Ha
, “
A ring-polymer model shows how macromolecular crowding controls chromosome-arm organization in Escherichia coli
,”
Sci. Rep.
7
,
11896
(
2017
).
9.
A.
Papantonis
and
P. R.
Cook
, “
Transcription factories: Genome organization and gene regulation
,”
Chem. Rev.
113
,
8683
8705
(
2013
).
10.
H.-X.
Zhou
,
G.
Rivas
, and
A. P.
Minton
, “
Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences
,”
Annu. Rev. Biophys.
37
,
375
397
(
2008
).
11.
S. E.
Norred
,
P. M.
Caveney
,
G.
Chauhan
,
L. K.
Collier
,
C. P.
Collier
,
S. M.
Abel
, and
M. L.
Simpson
, “
Macromolecular crowding induces spatial correlations that control gene expression bursting patterns
,”
ACS Synth. Biol.
7
,
1251
1258
(
2018
).
12.
M.
Delarue
,
G. P.
Brittingham
,
S.
Pfeffer
,
I. V.
Surovtsev
,
S.
Pinglay
,
K. J.
Kennedy
,
M.
Schaffer
,
J. I.
Gutierrez
,
D.
Sang
,
G.
Poterewicz
 et al, “
mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding
,”
Cell
174
,
338
349
(
2018
).
13.
T.
Kaur
,
I.
Alshareedah
,
W.
Wang
,
J.
Ngo
,
M. M.
Moosa
, and
P. R.
Banerjee
, “
Molecular crowding tunes material states of ribonucleoprotein condensates
,”
Biomolecules
9
,
71
(
2019
).
14.
R. J.
Ellis
, “
Macromolecular crowding: An important but neglected aspect of the intracellular environment
,”
Curr. Opin. Struct. Biol.
11
,
114
119
(
2001
).
15.
H.
Kang
,
P. A.
Pincus
,
C.
Hyeon
, and
D.
Thirumalai
, “
Effects of macromolecular crowding on the collapse of biopolymers
,”
Phys. Rev. Lett.
114
,
068303
(
2015
).
16.
T. N.
Shendruk
,
M.
Bertrand
,
H. W.
de Haan
,
J. L.
Harden
, and
G. W.
Slater
, “
Simulating the entropic collapse of coarse-grained chromosomes
,”
Biophys. J.
108
,
810
820
(
2015
).
17.
G.
Chauhan
,
M. L.
Simpson
, and
S. M.
Abel
, “
Crowding-induced interactions of ring polymers
,”
Soft Matter
17
,
16
23
(
2021
).
18.
A. W. C.
Lau
,
A.
Prasad
, and
Z.
Dogic
, “
Condensation of isolated semi-flexible filaments driven by depletion interactions
,”
Europhys. Lett.
87
,
48006
(
2009
).
19.
H.
Kang
,
N. M.
Toan
,
C.
Hyeon
, and
D.
Thirumalai
, “
Unexpected swelling of stiff DNA in a polydisperse crowded environment
,”
J. Am. Chem. Soc.
137
,
10970
10978
(
2015
).
20.
S. E.
Norred
,
R. M.
Dabbs
,
G.
Chauhan
,
P. M.
Caveney
,
C. P.
Collier
,
S. M.
Abel
, and
M. L.
Simpson
, “
Synergistic interactions between confinement and macromolecular crowding spatially order transcription and translation in cell-free expression
,” bioRxiv:445544 (
2018
).
21.
N.
Biswas
,
M.
Ichikawa
,
A.
Datta
,
Y. T.
Sato
,
M.
Yanagisawa
, and
K.
Yoshikawa
, “
Phase separation in crowded micro-spheroids: DNA-PEG system
,”
Chem. Phys. Lett.
539-540
,
157
162
(
2012
).
22.
D.
Welch
,
M. P.
Lettinga
,
M.
Ripoll
,
Z.
Dogic
, and
G. A.
Vliegenthart
, “
Trains, tails and loops of partially adsorbed semi-flexible filaments
,”
Soft Matter
11
,
7507
7514
(
2015
).
23.
T.
Hoppe
and
A. P.
Minton
, “
An equilibrium model for the combined effect of macromolecular crowding and surface adsorption on the formation of linear protein fibrils
,”
Biophys. J.
108
,
957
966
(
2015
).
24.
A. P.
Minton
, “
The cumulative effect of surface adsorption and excluded volume in 2D and 3D on protein fibrillation
,”
Biophys. J.
117
,
1666
1673
(
2019
).
25.
P. G.
De Gennes
, “
Polymers at an interface; a simplified view
,”
Adv. Colloid Interface Sci.
27
,
189
209
(
1987
).
26.
R. R.
Netz
and
D.
Andelman
, “
Neutral and charged polymers at interfaces
,”
Phys. Rep.
380
,
1
95
(
2003
).
27.
J.
Baschnagel
,
H.
Meyer
,
J.
Wittmer
,
I.
Kulić
,
H.
Mohrbach
,
F.
Ziebert
,
G.-M.
Nam
,
N.-K.
Lee
, and
A.
Johner
, “
Semiflexible chains at surfaces: Worm-like chains and beyond
,”
Polymers
8
,
286
(
2016
).
28.
R.
Simha
,
H. L.
Frisch
, and
F. R.
Eirich
, “
The adsorption of flexible macromolecules
,”
J. Phys. Chem.
57
,
584
589
(
1953
).
29.
A.
Milchev
and
K.
Binder
, “
Static and dynamic properties of adsorbed chains at surfaces: Monte Carlo simulation of a bead-spring model
,”
Macromolecules
29
,
343
354
(
1996
).
30.
E.
Eisenriegler
,
K.
Kremer
, and
K.
Binder
, “
Adsorption of polymer chains at surfaces: Scaling and Monte Carlo analyses
,”
J. Chem. Phys.
77
,
6296
6320
(
1982
).
31.
A.
Milchev
and
K.
Binder
, “
Linear dimensions of adsorbed semiflexible polymers: What can be learned about their persistence length?
,”
Phys. Rev. Lett.
123
,
128003
(
2019
).
32.
T.
Sintes
,
K.
Sumithra
, and
E.
Straube
, “
Adsorption of semiflexible polymers on flat, homogeneous surfaces
,”
Macromolecules
34
,
1352
1357
(
2001
).
33.
J.
Kierfeld
, “
Force-induced desorption and unzipping of semiflexible polymers
,”
Phys. Rev. Lett.
97
,
058302
(
2006
).
34.
J.
Kierfeld
and
R.
Lipowsky
, “
Unbundling and desorption of semiflexible polymers
,”
Europhys. Lett.
62
,
285
(
2003
).
35.
J.
Jiang
, “
Nonmonotonic adsorption behavior of semiflexible polymers
,”
J. Chem. Phys.
153
,
034902
(
2020
).
36.
T. A.
Kampmann
,
H.-H.
Boltz
, and
J.
Kierfeld
, “
Controlling adsorption of semiflexible polymers on planar and curved substrates
,”
J. Chem. Phys.
139
,
034903
(
2013
).
37.
W.
Chien
and
Y.-L.
Chen
, “
Confinement, curvature, and attractive interaction effects on polymer surface adsorption
,”
J. Chem. Phys.
147
,
064901
(
2017
).
38.
B.
Li
and
S. M.
Abel
, “
Shaping membrane vesicles by adsorption of a semiflexible polymer
,”
Soft Matter
14
,
185
193
(
2018
).
39.
X.
Zhou
,
F.
Guo
,
K.
Li
,
L.
He
, and
L.
Zhang
, “
Entropy-induced separation of binary semiflexible ring polymer mixtures in spherical confinement
,”
Polymers
11
,
1992
(
2019
).
40.
A.
Milchev
and
K.
Binder
, “
How does stiffness of polymer chains affect their adsorption transition?
,”
J. Chem. Phys.
152
,
064901
(
2020
).
41.
A. N.
Semenov
, “
Adsorption of a semiflexible wormlike chain
,”
Eur. Phys. J. E
9
,
353
363
(
2002
).
42.
T.
Odijk
, “
The statistics and dynamics of confined or entangled stiff polymers
,”
Macromolecules
16
,
1340
1344
(
1983
).
43.
T. A.
Kampmann
and
J.
Kierfeld
, “
Adsorption of finite semiflexible polymers and their loop and tail distributions
,”
J. Chem. Phys.
147
,
014901
(
2017
).
44.
J.-Z.
Zhang
,
X.-Y.
Peng
,
S.
Liu
,
B.-P.
Jiang
,
S.-C.
Ji
, and
X.-C.
Shen
, “
The persistence length of semiflexible polymers in lattice Monte Carlo simulations
,”
Polymers
11
,
295
(
2019
).
45.
P.
Gutjahr
,
R.
Lipowsky
, and
J.
Kierfeld
, “
Persistence length of semiflexible polymers and bending rigidity renormalization
,”
Europhys. Lett.
76
,
994
(
2006
).
46.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
5247
(
1971
).
47.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,” Technical Report No. SAND91–1144,
Sandia National Laboratories
,
Albuquerque, NM
,
1993
.
48.
S.
Plimpton
,
A.
Thompson
,
P.
Crozier
, and
A.
Kohlmeyer
, LAMMPS molecular dynamics simulator, http://lammps.sandia.gov,
2011
.
49.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2009
).
50.
J. K.
Armstrong
,
R. B.
Wenby
,
H. J.
Meiselman
, and
T. C.
Fisher
, “
The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation
,”
Biophys. J.
87
,
4259
4270
(
2004
).
51.
L.
Dai
,
J. J.
Jones
,
J. R. C.
van der Maarel
, and
P. S.
Doyle
, “
A systematic study of DNA conformation in slitlike confinement
,”
Soft Matter
8
,
2972
2982
(
2012
).
52.
T. N.
Shendruk
,
M.
Bertrand
,
J. L.
Harden
,
G. W.
Slater
, and
H. W.
de Haan
, “
Coarse-grained molecular dynamics simulations of depletion-induced interactions for soft matter systems
,”
J. Chem. Phys.
141
,
244910
(
2014
).
53.
S.
Mirzaeifard
and
S. M.
Abel
, “
Confined semiflexible polymers suppress fluctuations of soft membrane tubes
,”
Soft Matter
12
,
1783
1790
(
2016
).
54.
A.
Chen
and
N.
Zhao
, “
Comparative study of the crowding-induced collapse effect in hard-sphere, flexible polymer and rod-like polymer systems
,”
Phys. Chem. Chem. Phys.
21
,
12335
12345
(
2019
).
55.
W. M.
Mardoum
,
S. M.
Gorczyca
,
K. E.
Regan
,
T.-C.
Wu
, and
R. M.
Robertson-Anderson
, “
Crowding induces entropically-driven changes to DNA dynamics that depend on crowder structure and ionic conditions
,”
Front. Phys.
6
,
53
(
2018
).
You do not currently have access to this content.