We systematically investigated the structure and aggregate morphology of gel networks formed by colloid–polymer mixtures with a moderate colloid volume fraction and different values of the polymer–colloid size ratio, always in the limit of short-range attraction. Using the coordinates obtained from confocal microscopy experiments, we determined the radial, angular, and nearest-neighbor distribution functions together with the cluster radius of gyration as a function of size ratio and polymer concentration. The analysis of the structural correlations reveals that the network structure becomes increasingly less sensitive to the potential strength with the decreasing polymer–colloid size ratio. For the larger size ratios, compact clusters are formed at the onset of network formation and become progressively more branched and elongated with increasing polymer concentration/attraction strength. For the smallest size ratios, we observe that the aggregate structures forming the gel network are characterized by similar morphological parameters for different values of the size ratio and the polymer concentration, indicating a limited evolution of the gel structure with variations of the parameters that determine the interaction potential between colloids.

1.
J.
Bentley
and
G.
Turner
,
Introduction to Paint Chemistry and Principles of Paint Technology
, 4th ed. (
Taylor & Francis
,
London
,
1997
).
2.
E.
Dickinson
, “
Colloids in food: Ingredients, structure, and stability
,”
Annu. Rev. Food Sci. Technol.
6
,
211
233
(
2015
).
3.
T. F. E.
Tadros
,
Colloid Stability and Application in Pharmacy
(
Wiley-VCH Verlag GmbH
,
2011
), Vol. 3.
4.
T. E.
Cosgrove
,
Colloid Science: Principles, Methods and Applications
(
Wiley
,
2010
).
5.
W. B.
Russel
,
D. A.
Saville
, and
W. R.
Schowalter
,
Colloidal Dispersions
, Cambridge Monographs on Mechanics (
Cambridge University Press
,
1989
).
6.
Z.
Zhang
and
Y.
Liu
, “
Recent progresses of understanding the viscosity of concentrated protein solutions
,”
Curr. Opin. Chem. Eng.
16
,
48
55
(
2017
), part of Special Issue: Nanotechnology/Separation Engineering.
7.
A.
Aguzzi
and
T.
O’Connor
, “
Protein aggregation diseases: Pathogenicity and therapeutic perspectives
,”
Nat. Rev. Drug Discovery
9
,
237
248
(
2010
).
8.
Y.
Shin
and
C. P.
Brangwynne
, “
Liquid phase condensation in cell physiology and disease
,”
Science
357
,
eaaf4382
(
2017
), https://science.sciencemag.org/content/357/6357/eaaf4382.full.pdf.
9.
P.
Germain
and
S.
Amokrane
, “
Equilibrium and glassy states of the Asakura-Oosawa and binary hard sphere mixtures: Effective fluid approach
,”
Phys. Rev. E
76
,
031401
(
2007
).
10.
K.
Binder
,
P.
Virnau
, and
A.
Statt
, “
Perspective: The Asakura Oosawa model: A colloid prototype for bulk and interfacial phase behavior
,”
J. Chem. Phys.
141
,
140901
(
2014
).
11.
P. N.
Pusey
,
Liquids, Freezing and Glass Transition
(
Elsevier
,
1991
), pp.
764
942
.
12.
W. C. K.
Poon
,
S. M.
Ilett
, and
P. N.
Pusey
, “
Phase behaviour of colloid-polymer mixtures
,”
Il Nuovo Cimento D
16
,
1127
1139
(
1994
).
13.
S. M.
Ilett
,
A.
Orrock
,
W. C. K.
Poon
, and
P. N.
Pusey
, “
Phase behavior of a model colloid-polymer mixture
,”
Phys. Rev. E
51
,
1344
1352
(
1995
).
14.
S. A.
Shah
,
Y.-L.
Chen
,
S.
Ramakrishnan
,
K. S.
Schweizer
, and
C. F.
Zukoski
, “
Microstructure of dense colloid-polymer suspensions and gels
,”
J. Phys.: Condens. Matter
15
,
4751
4778
(
2003
).
15.
V.
Trappe
and
P.
Sandkühler
, “
Colloidal gels–low-density disordered solid-like states
,”
Curr. Opin. Colloid Interface Sci.
8
,
494
500
(
2004
).
16.
H.
Sedgwick
,
S. U.
Egelhaaf
, and
W. C. K.
Poon
, “
Clusters and gels in systems of sticky particles
,”
J. Phys.: Condens. Matter
16
,
S4913
S4922
(
2004
).
17.
C. J.
Dibble
,
M.
Kogan
, and
M. J.
Solomon
, “
Structure and dynamics of colloidal depletion gels: Coincidence of transitions and heterogeneity
,”
Phys. Rev. E
74
,
041403
(
2006
).
18.
E.
Zaccarelli
, “
Colloidal gels: Equilibrium and non-equilibrium routes
,”
J. Phys.: Condens. Matter
19
,
323101
(
2007
).
19.
A.
Kozina
,
P.
Díaz-Leyva
,
C.
Friedrich
, and
E.
Bartsch
, “
Structural and dynamical evolution of colloid-polymer mixtures on crossing glass and gel transition as seen by optical microrheology and mechanical bulk rheology
,”
Soft Matter
8
,
1033
1046
(
2012
).
20.
M. E.
Helgeson
,
Y.
Gao
,
S. E.
Moran
,
J.
Lee
,
M.
Godfrin
,
A.
Tripathi
,
A.
Bose
, and
P. S.
Doyle
, “
Homogeneous percolation versus arrested phase separation in attractively-driven nanoemulsion colloidal gels
,”
Soft Matter
10
,
3122
3133
(
2014
).
21.
E. D.
Gado
,
D.
Fiocco
,
G.
Foffi
,
S.
Manley
,
V.
Trappe
, and
A.
Zaccone
, “
Colloidal gelation
,” in
Fluids, Colloids and Soft Materials
(
John Wiley & Sons, Ltd.
,
2016
), Chap. 14, pp.
279
291
, https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119220510.ch14.
22.
S.
Asakura
and
F.
Oosawa
, “
Interaction between particles suspended in solutions of macromolecules
,”
J. Polym. Sci.
33
,
183
192
(
1958
), https://onlinelibrary.wiley.com/doi/pdf/10.1002/pol.1958.1203312618.
23.
P. J.
Lu
,
E.
Zaccarelli
,
F.
Ciulla
,
A. B.
Schofield
,
F.
Sciortino
, and
D. A.
Weitz
, “
Gelation of particles with short-range attraction
,”
Nature
453
,
499
503
(
2008
).
24.
J. C.
Conrad
,
H. M.
Wyss
,
V.
Trappe
,
S.
Manley
,
K.
Miyazaki
,
L. J.
Kaufman
,
A. B.
Schofield
,
D. R.
Reichman
, and
D. A.
Weitz
, “
Arrested fluid-fluid phase separation in depletion systems: Implications of the characteristic length on gel formation and rheology
,”
J. Rheol.
54
,
421
438
(
2010
).
25.
N.
Park
and
J. C.
Conrad
, “
Phase behavior of colloid-polymer depletion mixtures with unary or binary depletants
,”
Soft Matter
13
,
2781
2792
(
2017
).
26.
A.
González García
and
R.
Tuinier
, “
Tuning the phase diagram of colloid-polymer mixtures via Yukawa interactions
,”
Phys. Rev. E
94
,
062607
(
2016
).
27.
N.
Kovalchuk
,
V.
Starov
,
P.
Langston
, and
N.
Hilal
, “
Formation of stable clusters in colloidal suspensions
,”
Adv. Colloid Interface Sci.
147-148
,
144
(
2009
).
28.
C. L.
Klix
,
C. P.
Royall
, and
H.
Tanaka
, “
Structural and dynamical features of multiple metastable glassy states in a colloidal system with competing interactions
,”
Phys. Rev. Lett.
104
,
165702
(
2010
).
29.
P. D.
Godfrin
,
N. E.
Valadez-Pérez
,
R.
Castañeda-Priego
,
N. J.
Wagner
, and
Y.
Liu
, “
Generalized phase behavior of cluster formation in colloidal dispersions with competing interactions
,”
Soft Matter
10
,
5061
(
2014
).
30.
M. B.
Sweatman
,
R.
Fartaria
, and
L.
Lue
, “
Cluster formation in fluids with competing short-range and long-range interactions
,”
J. Chem. Phys.
140
,
124508
(
2014
).
31.
N. E.
Valadez-Pérez
,
R.
Castañeda-Priego
, and
Y.
Liu
, “
Percolation in colloidal systems with competing interactions: The role of long-range repulsion
,”
RSC Adv.
3
,
25110
(
2013
).
32.
M.
Kohl
,
R. F.
Capellmann
,
M.
Laurati
,
S. U.
Egelhaaf
, and
M.
Schmiedeberg
, “
Directed percolation identified as equilibrium pre-transition towards non-equilibrium arrested gel states
,”
Nat. Commun.
7
,
11817
(
2016
).
33.
Y.
Liu
and
Y.
Xi
, “
Colloidal systems with a short-range attraction and long-range repulsion: Phase diagrams, structures, and dynamics
,”
Curr. Opin. Colloid Interface Sci.
39
,
123
136
(
2019
), part of Special Issue: Outstanding Young Researchers in Colloid and Interface Science.
34.
A. I.
Campbell
,
V. J.
Anderson
,
J. S.
van Duijneveldt
, and
P.
Bartlett
, “
Dynamical arrest in attractive colloids: The effect of long-range repulsion
,”
Phys. Rev. Lett.
94
,
208301
(
2005
).
35.
P. D.
Godfrin
,
R.
Castañeda-Priego
,
Y.
Liu
, and
N. J.
Wagner
, “
Intermediate range order and structure in colloidal dispersions with competing interactions
,”
J. Chem. Phys.
139
,
154904
(
2013
).
36.
R. F.
Capellmann
,
N. E.
Valadez-Pérez
,
B.
Simon
,
S. U.
Egelhaaf
,
M.
Laurati
, and
R.
Castañeda-Priego
, “
Structure of colloidal gels at intermediate concentrations: The role of competing interactions
,”
Soft Matter
12
,
9303
9313
(
2016
).
37.
J.
Ruiz-Franco
,
F.
Camerin
,
N.
Gnan
, and
E.
Zaccarelli
, “
Tuning the rheological behavior of colloidal gels through competing interactions
,”
Phys. Rev. Mater.
4
,
045601
(
2020
).
38.
J. E.
Verweij
,
F. A. M.
Leermakers
,
J.
Sprakel
, and
J.
van der Gucht
, “
Plasticity in colloidal gel strands
,”
Soft Matter
15
,
6447
6454
(
2019
).
39.
P. J.
Lu
,
J. C.
Conrad
,
H. M.
Wyss
,
A. B.
Schofield
, and
D. A.
Weitz
, “
Fluids of clusters in attractive colloids
,”
Phys. Rev. Lett.
96
,
028306
(
2006
).
40.
A.
Imperio
and
L.
Reatto
, “
Microphase morphology in two-dimensional fluids under lateral confinement
,”
Phys. Rev. E
76
,
040402
(
2007
).
41.
I.
Zhang
,
C. P.
Royall
,
M. A.
Faers
, and
P.
Bartlett
, “
Phase separation dynamics in colloid-polymer mixtures: The effect of interaction range
,”
Soft Matter
9
,
2076
2084
(
2013
).
42.
N. I.
Lebovka
,
Polyelectrolyte Complexes in the Dispersed and Solid State I: Principles and Theory
(
Springer
,
Berlin, Heidelberg
,
2013
), pp.
57
96
.
43.
S.
Haddadi
,
M.
Skepö
,
P.
Jannasch
,
S.
Manner
, and
J.
Forsman
, “
Building polymer-like clusters from colloidal particles with isotropic interactions, in aqueous solution
,”
J. Colloid Interface Sci.
581
,
669
681
(
2021
).
44.
F.
Sciortino
,
P.
Tartaglia
, and
E.
Zaccarelli
, “
One-dimensional cluster growth and branching gels in colloidal systems with short-range depletion attraction and screened electrostatic repulsion
,”
J. Phys. Chem. B
109
,
21942
21953
(
2005
).
45.
T.
Ohtsuka
,
C. P.
Royall
, and
H.
Tanaka
, “
Local structure and dynamics in colloidal fluids and gels
,”
Europhys. Lett.
84
,
46002
(
2008
).
46.
N. E.
Valadez-Pérez
,
Y.
Liu
, and
R.
Castañeda-Priego
, “
Reversible aggregation and colloidal cluster morphology: The importance of the extended law of corresponding states
,”
Phys. Rev. Lett.
120
,
248004
(
2018
).
47.
G. C.
Berry
, “
Thermodynamic and conformational properties of polystyrene. I. Light-scattering studies on dilute solutions of linear polystyrenes
,”
J. Chem. Phys.
44
,
4550
4564
(
1966
).
48.
C. P.
Royall
,
M. E.
Leunissen
,
A.-P.
Hynninen
,
M.
Dijkstra
, and
A.
van Blaaderen
, “
Re-entrant melting and freezing in a model system of charged colloids
,”
J. Chem. Phys.
124
,
244706
(
2006
).
49.
J.
Dobnikar
,
R.
Castañeda-Priego
,
H. H.
von Grünberg
, and
E.
Trizac
, “
Testing the relevance of effective interaction potentials between highly-charged colloids in suspension
,”
New J. Phys.
8
,
277
(
2006
).
50.
C. P.
Royall
,
W. C. K.
Poon
, and
E. R.
Weeks
, “
In search of colloidal hard spheres
,”
Soft Matter
9
,
17
27
(
2013
).
51.
J. C.
Crocker
and
D. G.
Grier
, “
Methods of digital video microscopy for colloidal studies
,”
J. Colloid Interface Sci.
179
,
298
310
(
1996
).
52.
Y.
Gao
and
M.
Kilfoil
, “
Experimental determination of order in non-equilibrium solids using colloidal gels
,”
J. Phys.: Condens. Matter
16
,
S5191
S5202
(
2004
).
53.
H.
Tsurusawa
,
S.
Arai
, and
H.
Tanaka
, “
A unique route of colloidal phase separation yields stress-free gels
,”
Sci. Adv.
6
,
eabb8107
(
2020
), https://advances.sciencemag.org/content/6/41/eabb8107.full.pdf.
54.
E. M.
Sevick
,
P. A.
Monson
, and
J. M.
Ottino
, “
Monte Carlo calculations of cluster statistics in continuum models of composite morphology
,”
J. Chem. Phys.
88
,
1198
(
1998
).

Supplementary Material

You do not currently have access to this content.