Steady-state and time-resolved fluorescence were used to investigate the solvation of coumarin 153 (C153) and coumarin 343 (C343) in methanol + ethaline binary solutions, a deep eutectic solvent composed of a 1:2 molar ratio choline chloride + ethylene glycol. In addition, time-resolved anisotropy decays were used to determine the solute’s rotational reorientation time as a function of viscosity. Measurements were made in solutions covering the entire range of mole fraction. Viscosity measurements were used to characterize the bulk solvent properties, and as expected, addition of methanol resulted in an decreased viscosity, showing an exponential decrease with mole fraction, up to ∼50-fold at xMeOH = 1.0. Probe rotational reorientation times were found to be biexponential at xMeOH < 0.3 for C153 and xMeOH < 0.5 for C343 and monoexponential at richer methanol content. In proportion to viscosity, C153 and C343 average rotation times decreased ∼30-fold from xMeOH = 0 to 0.9 and showed a power law dependence of ∼η0.85. Rotation times approached the stick boundary limit on dilution with methanol. Time-resolved Stokes shifts quantified the solvation dynamics and were nearly single exponential for C153 but were clearly biexponential for C343. Solvation times also tracked with viscosity according to a power law dependence, with exponents of 0.3 and 0.4 for C153 and C343, respectively. The dilution effect of methanol was not linear in proportion to the viscosity change and alone cannot account for the change in solvation. Dilution also showed a different correlation to solvation than did temperature variations to govern the viscosity change.

1.
B. B.
Hansen
,
S.
Spittle
,
B.
Chen
,
D.
Poe
,
Y.
Zhang
,
J. M.
Klein
,
A.
Horton
,
L.
Adhikari
,
T.
Zelovich
,
B. W.
Doherty
,
B.
Gurkan
,
E. J.
Maginn
,
A.
Ragauskas
,
M.
Dadmun
,
T. A.
Zawodzinski
,
G. A.
Baker
,
M. E.
Tuckerman
,
R. F.
Savinell
, and
J. R.
Sangoro
,
Chem. Rev.
121
,
1232
(
2021
).
2.
E. L.
Smith
,
A. P.
Abbott
, and
K. S.
Ryder
,
Chem. Rev.
114
,
11060
(
2014
).
3.
A. P.
Abbott
,
G.
Capper
,
D. L.
Davies
,
R. K.
Rasheed
, and
V.
Tambyrajah
,
Chem. Commun.
2003
,
70
.
4.
A. P.
Abbott
,
D.
Boothby
,
G.
Capper
,
D. L.
Davies
, and
R. K.
Rasheed
,
J. Am. Chem. Soc.
126
,
9142
(
2004
).
5.
F.
Endres
,
D.
MacFarlane
, and
A.
Abbott
,
Electrodeposition from Ionic Liquids
(
Wiley‐VCH Verlag GmbH & Co. KGaA
,
2008
),
6.
M. H.
Zainal-Abidin
,
M.
Hayyan
,
A.
Hayyan
, and
N. S.
Jayakumar
,
Anal. Chim. Acta
979
,
1
(
2017
).
7.
T.
Beyersdorff
,
T. J. S.
Schubert
,
U.
Welz-Biermann
,
W.
Pitner
,
A. P.
Abbott
,
K. J.
McKenzie
, and
K. S.
Ryder
,
Electrodeposition from Ionic Liquids
(
Wiley VCH
,
Weinheim
,
2008
).
8.
A.
Yadav
and
S.
Pandey
,
J. Chem. Eng. Data
59
,
2221
(
2014
).
9.
A.
Yadav
,
S.
Trivedi
,
R.
Rai
, and
S.
Pandey
,
Fluid Phase Equilib.
367
,
135
(
2014
).
10.
M. K.
AlOmar
,
M.
Hayyan
,
M. A.
Alsaadi
,
S.
Akib
,
A.
Hayyan
, and
M. A.
Hashim
,
J. Mol. Liq.
215
,
98
(
2016
).
11.
R. K.
Ibrahim
,
M.
Hayyan
,
M. A.
AlSaadi
,
S.
Ibrahim
,
A.
Hayyan
, and
M. A.
Hashim
,
J. Mol. Liq.
276
,
794
(
2019
).
12.
A.
Pandey
and
S.
Pandey
,
J. Phys. Chem. B
118
,
14652
(
2014
).
13.
C.
Florindo
,
A. J. S.
McIntosh
,
T.
Welton
,
L. C.
Branco
, and
I. M.
Marrucho
,
Phys. Chem. Chem. Phys.
20
,
206
(
2018
).
14.
L. P.
Silva
,
C. F.
Araújo
,
D. O.
Abranches
,
M.
Melle-Franco
,
M. A. R.
Martins
,
M. M.
Nolasco
,
P. J. A.
Ribeiro-Claro
,
S. P.
Pinho
, and
J. A. P.
Coutinho
,
Phys. Chem. Chem. Phys.
21
,
18278
(
2019
).
15.
G.
García
,
M.
Atilhan
, and
S.
Aparicio
,
Chem. Phys. Lett.
634
,
151
(
2015
).
16.
P.
Kalhor
,
J.
Xu
,
H.
Ashraf
,
B.
Cao
, and
Z.-W.
Yu
,
J. Phys. Chem. B
124
,
1229
(
2020
).
17.
A.
Malik
,
H. S.
Dhattarwal
, and
H. K.
Kashyap
,
J. Phys. Chem. B
125
,
1852
(
2021
).
18.
K.
Kumar
,
A.
Bharti
, and
A.
Sinha
, “
Structural and transport properties of binary mixtures of deep eutectic solvent (ethaline) with primary alcohols: A molecular dynamics study
,” chemRxiv:14381996.v1 (
2021
).
19.
Y.
Zhang
,
D.
Poe
,
L.
Heroux
,
H.
Squire
,
B. W.
Doherty
,
Z.
Long
,
M.
Dadmun
,
B.
Gurkan
,
M. E.
Tuckerman
, and
E. J.
Maginn
,
J. Phys. Chem. B
124
,
5251
(
2020
).
20.
S.
Kaur
,
A.
Gupta
, and
H. K.
Kashyap
,
J. Phys. Chem. B
124
,
2230
(
2020
).
21.
V.
Alizadeh
,
F.
Malberg
,
A. A. H.
Pádua
, and
B.
Kirchner
,
J. Phys. Chem. B
124
,
7433
(
2020
).
22.
V.
Migliorati
,
F.
Sessa
, and
P.
D’Angelo
,
Chem. Phys. Lett.
2
,
100001
(
2019
).
23.
J. A. L.
Willcox
,
H.
Kim
, and
H. J.
Kim
,
Phys. Chem. Chem. Phys.
18
,
14850
(
2016
).
24.
P.
Kalhor
,
Y. Z.
Zheng
,
H.
Ashraf
,
B.
Cao
, and
Z. W.
Yu
,
ChemPhysChem
21
,
995
(
2020
).
25.
C. J.
Smith
,
D. V.
Wagle
,
N.
Bhawawet
,
S.
Gehrke
,
O.
Hollóczki
,
S. V.
Pingali
,
H.
O’Neill
, and
G. A.
Baker
,
J. Phys. Chem. Lett.
124
,
7647
(
2020
).
26.
D. V.
Wagle
,
G. A.
Baker
, and
E.
Mamontov
,
J. Phys. Chem. Lett.
6
,
2924
(
2015
).
27.
A.
Faraone
,
D. V.
Wagle
,
G. A.
Baker
,
E. C.
Novak
,
M.
Ohl
,
D.
Reuter
,
P.
Lunkenheimer
,
A.
Loidl
, and
E.
Mamontov
,
J. Phys. Chem. B
122
,
1261
(
2018
).
28.
D. V.
Wagle
,
C. A.
Deakyne
, and
G. A.
Baker
,
J. Phys. Chem. B
120
,
6739
(
2016
).
29.
S. S.
Hossain
,
S.
Paul
, and
A.
Samanta
,
J. Phys. Chem. B
123
,
6842
(
2019
).
30.
D.
Shah
,
U.
Mansurov
, and
F. S.
Mjalli
,
Phys. Chem. Chem. Phys.
21
,
17200
(
2019
).
31.
N.
Subba
,
K.
Polok
,
P.
Piatkowski
,
B.
Ratajska-Gadomska
,
R.
Biswas
,
W.
Gadomski
, and
P.
Sen
,
J. Phys. Chem. B
123
,
9212
(
2019
).
32.
A.
Das
and
R.
Biswas
,
J. Phys. Chem. B
119
,
10102
(
2015
).
33.
S. S.
Hossain
and
A.
Samanta
,
J. Phys. Chem. B
121
,
10556
(
2017
).
34.
S. S.
Hossain
,
S.
Paul
, and
A.
Samanta
,
J. Phys. Chem. B
124
,
2473
(
2020
).
35.
A. H.
Turner
and
D.
Kim
,
J. Chem. Phys.
149
,
174503
(
2018
).
36.
E.
Tarif
,
J.
Mondal
, and
R.
Biswas
,
J. Mol. Liq.
303
,
112451
(
2020
).
37.
E.
Tarif
,
J.
Mondal
, and
R.
Biswas
,
J. Phys. Chem. B
123
,
9378
(
2019
).
38.
A.
Das
,
S.
Das
, and
R.
Biswas
,
J. Chem. Phys.
142
,
034505
(
2015
).
39.
A. R.
Harifi-Mood
and
R.
Buchner
,
J. Mol. Liq.
225
,
689
(
2017
).
40.
R. B.
Leron
,
A. N.
Soriano
, and
M.-H.
Li
,
J. Taiwan Inst. Chem. Eng.
43
,
551
(
2012
).
41.
K.-S.
Kim
and
B. H.
Park
,
J. Mol. Liq.
254
,
272
(
2018
).
42.
R.
Alcalde
,
M.
Atilhan
, and
S.
Aparicio
,
J. Mol. Liq.
272
,
815
(
2018
).
43.
N. F.
Gajardo-Parra
,
M. J.
Lubben
,
J. M.
Winnert
,
Á.
Leiva
,
J. F.
Brennecke
, and
R. I.
Canales
,
J. Chem. Thermodyn.
133
,
272
(
2019
).
44.
R.
Haghbakhsh
and
S.
Raeissi
,
Fluid Phase Equilib.
472
,
39
(
2018
).
45.
M.
Kuddushi
,
G. S.
Nangala
,
S.
Rajput
,
S. P.
Ijardar
, and
N. I.
Malek
,
J. Mol. Liq.
278
,
607
(
2019
).
46.
O. S.
Hammond
,
D. T.
Bowron
, and
K. J.
Edler
,
Angew. Chem., Int. Ed.
56
,
9782
(
2017
).
47.
C.
D’Agostino
,
L. F.
Gladden
,
M. D.
Mantle
,
A. P.
Abbott
,
E. I.
Ahmed
,
A. Y. M.
Al-Murshedi
, and
R. C.
Harris
,
Phys. Chem. Chem. Phys.
17
,
15297
(
2015
).
48.
R.
Häkkinen
,
O.
Alshammari
,
V.
Timmermann
,
C.
D’Agostino
, and
A.
Abbott
,
ACS Sustainable Chem. Eng.
7
,
15086
(
2019
).
49.
C.
D'Agostino
,
R. C.
Harris
,
A. P.
Abbott
,
L. F.
Gladden
, and
M. D.
Mantle
,
Phys. Chem. Chem. Phys.
13
,
21383
(
2011
).
50.
R.
Zwanzig
and
A. K.
Harrison
,
J. Chem. Phys.
83
,
5861
(
1985
).
51.
G.
Fleming
,
Chemical Applications of Ultrafast Spectroscopy
(
Oxford University Press
,
New York, NY
,
1986
).
52.
K. M.
Barra
,
R. P.
Sabatini
,
Z. P.
McAtee
, and
M. P.
Heitz
,
J. Phys. Chem. B
118
,
12979
(
2014
).
53.
H.
Jin
,
G. A.
Baker
,
S.
Arzhantsev
,
J.
Dong
, and
M.
Maroncelli
,
J. Phys. Chem. B
111
,
7291
(
2007
).
54.
A.
Chakraborty
,
D.
Seth
,
D.
Chakrabarty
,
P.
Setua
, and
N.
Sarkar
,
J. Phys. Chem. A
109
,
11110
(
2005
).
55.
D.
Chakrabarty
,
A.
Chakraborty
,
D.
Seth
, and
N.
Sarkar
,
J. Phys. Chem. A
109
,
1764
(
2005
).
56.
J. A.
Ingram
,
R. S.
Moog
,
N.
Ito
,
R.
Biswas
, and
M.
Maroncelli
,
J. Phys. Chem. B
107
,
5926
(
2003
).
57.
M. L.
Horng
,
J. A.
Gardecki
,
A.
Papazyan
, and
M.
Maroncelli
,
J. Phys. Chem.
99
,
17311
(
1995
).
58.
S.
Bose
,
R.
Adhikary
,
P.
Mukherjee
,
X.
Song
, and
J. W.
Petrich
,
J. Phys. Chem. B
113
,
11061
(
2009
).
59.
A. M.
Funston
,
T. A.
Fadeeva
,
J. F.
Wishart
, and
E. W.
Castner
,
J. Phys. Chem. B
111
,
4963
(
2007
).
60.
N.
Ito
,
S.
Arzhantsev
,
M.
Heitz
, and
M.
Maroncelli
,
J. Phys. Chem. B
108
,
5771
(
2004
).
61.
A.
Samanta
,
J. Phys. Chem. Lett.
1
,
1557
(
2010
).
62.
M.-L.
Horng
,
J. A.
Gardecki
, and
M.
Maroncelli
,
J. Phys. Chem. A
101
,
1030
(
1997
).
63.
G. B.
Dutt
and
T. K.
Ghanty
,
J. Phys. Chem. B
107
,
3257
(
2003
).
65.
Wavefunction, Inc., 18401 Von Karman Avenue, Suite 370, Irvine, CA 92612,
2018
.
66.
B.
Guchhait
,
S.
Das
,
S.
Daschakraborty
, and
R.
Biswas
,
J. Chem. Phys.
140
,
104514
(
2014
).
67.
J.
Rajbangshi
,
K.
Mukherjee
, and
R.
Biswas
,
J. Phys. Chem. B
125
,
5920
(
2021
).
68.
S.
Das
,
R.
Biswas
, and
B.
Mukherjee
,
J. Phys. Chem. B
119
,
11157
(
2015
).
69.
S.
Kaur
,
A.
Malik
, and
H. K.
Kashyap
,
J. Phys. Chem. B
123
,
8291
(
2019
).
70.
H.
Jin
,
B.
O’Hare
,
J.
Dong
,
S.
Arzhantsev
,
G. A.
Baker
,
J. F.
Wishart
,
A. J.
Benesi
, and
M.
Maroncelli
,
J. Phys. Chem. B
112
,
81
(
2007
).
71.
M.
Maroncelli
and
G. R.
Fleming
,
J. Chem. Phys.
86
,
6221
(
1987
).
72.
R. S.
Fee
and
M.
Maroncelli
,
Chem. Phys.
183
,
235
(
1994
).

Supplementary Material

You do not currently have access to this content.