Absorption, fluorescence, and phosphorescence spectra of single crystals of [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and BTBT dispersed in frozen n-nonane, n-hexadecane, and dichloromethane matrices were studied at 5 K. Observation of a new absorption band and related changes in the fluorescence to phosphorescence intensity ratio, when the concentration of BTBT in the matrix increased above 10−4M, indicated the presence of BTBT aggregates. Quantum-chemistry calculations performed for the simplest aggregate, isolated dimer, showed that its structure is similar to the “herringbone” element in the BTBT crystal unit cell and the lowest electronic excited singlet state of the dimer has the intermolecular charge-transfer character. A qualitatively different nature of this state in dimers and in crystals, when compared with the situation in BTBT monomer [locally excited (LE) state], is associated with a decrease in the intersystem crossing yield. The structured vibronic structure of phosphorescence spectra in the studied systems indicated LE character of the triplet states.

Supplementary Material

You do not currently have access to this content.