A measurement of the magnitude of the electric dipole moment of the electron (eEDM) larger than that predicted by the Standard Model (SM) of particle physics is expected to have a huge impact on the search for physics beyond the SM. Polar diatomic molecules containing heavy elements experience enhanced sensitivity to parity (P) and time-reversal (T)-violating phenomena, such as the eEDM and the scalar–pseudoscalar (S–PS) interaction between the nucleons and the electrons, and are thus promising candidates for measurements. The NL-eEDM collaboration is preparing an experiment to measure the eEDM and S–PS interaction in a slow beam of cold BaF molecules [P. Aggarwal et al., Eur. Phys. J. D 72, 197 (2018)]. Accurate knowledge of the electronic structure parameters, Wd and Ws, connecting the eEDM and the S–PS interaction to the measurable energy shifts is crucial for the interpretation of these measurements. In this work, we use the finite field relativistic coupled cluster approach to calculate the Wd and Ws parameters in the ground state of the BaF molecule. Special attention was paid to providing a reliable theoretical uncertainty estimate based on investigations of the basis set, electron correlation, relativistic effects, and geometry. Our recommended values of the two parameters, including conservative uncertainty estimates, are 3.13 ±0.12×1024Hzecm for Wd and 8.29 ± 0.12 kHz for Ws.

1.
M.
Tanabashi
 et al,
Particle Data Group
, “
Review of particle physics
,”
Phys. Rev. D
98
,
030001
(
2018
).
2.
M.
Dine
and
A.
Kusenko
, “
Origin of the matter-antimatter asymmetry
,”
Rev. Mod. Phys.
76
,
1
(
2003
).
3.
Particle Dark Matter: Observations, Models and Searches
, edited by
G.
Bertone
(
Cambridge University Press
,
2010
).
4.
P. J. E.
Peebles
and
B.
Ratra
, “
The cosmological constant and dark energy
,”
Rev. Mod. Phys.
75
,
559
606
(
2003
).
5.
N.
Arkani-Hamed
,
T.
Han
,
M.
Mangano
, and
L.-T.
Wang
, “
Physics opportunities of a 100 TeV proton–proton collider
,”
Phys. Rep.
652
,
1
(
2016
).
6.
J.-P.
Uzan
, “
Varying constants, gravitation and cosmology
,”
Living Rev. Relativ.
14
,
2
(
2011
).
7.
E. D.
Commins
,
Electric Dipole Moments of Leptons
(
Academic Press
,
1999
), pp.
1
55
.
8.
J. S. M.
Ginges
and
V. V.
Flambaum
, “
Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles
,”
Phys. Rep.
397
,
63
154
(
2004
).
9.
M. S.
Safronova
,
D.
Budker
,
D.
DeMille
,
D. F. J.
Kimball
,
A.
Derevianko
, and
C. W.
Clark
, “
Search for new physics with atoms and molecules
,”
Rev. Mod. Phys.
90
,
025008
(
2018
).
10.
S.
Rappoccio
, “
The experimental status of direct searches for exotic physics beyond the standard model at the Large Hadron Collider
,”
Rev. Phys.
4
,
100027
(
2019
).
11.
D.
DeMille
, “
Diatomic molecules, a window onto fundamental physics
,”
Phys. Today
68
(
12
),
34
(
2015
).
12.
M.
Pospelov
and
A.
Ritz
, “
Electric dipole moments as probes of new physics
,”
Ann. Phys.
318
,
119
(
2005
).
13.
M. B.
Gavela
,
P.
Hernandez
,
J.
Orloff
,
O.
Péne
, and
C.
Quimbay
, “
Standard model CP-violation and baryon asymmetry. II. Finite temperature
,”
Nucl. Phys. B
430
,
382
(
1994
).
14.
W.
Bernreuther
and
M.
Suzuki
, “
The electric dipole moment of the electron
,”
Rev. Mod. Phys.
63
,
313
(
1991
).
15.
A.
Czarnecki
and
W. J.
Marciano
, “
Electromagnetic dipole moments and new physics
,” in
Lepton Dipole Moments
(
World Scientific
,
2009
), pp.
11
67
.
16.
P. G. H.
Sandars
, “
The electric dipole moment of an atom
,”
Phys. Lett.
14
,
194
(
1965
).
17.
P. G. H.
Sandars
, “
Measurability of the proton electric dipole moment
,”
Phys. Rev. Lett.
19
,
1396
(
1967
).
18.
O. P.
Sushkov
and
V. V.
Flambaum
, “
Parity breaking effects in diatomic molecules
,”
Sov. Phys. JETP
48
,
608
(
1978
).
19.
E. D.
Commins
,
J. D.
Jackson
, and
D. P.
DeMille
, “
The electric dipole moment of the electron: An intuitive explanation for the evasion of Schiff’s theorem
,”
Am. J. Phys.
75
,
532
(
2007
).
20.
T.
Chupp
and
M.
Ramsey-Musolf
, “
Electric dipole moments: A global analysis
,”
Phys. Rev. C
91
,
035502
(
2015
).
21.
M.
Jung
, “
A robust limit for the electric dipole moment of the electron
,”
J. High Energy Phys.
2013
,
168
; arXiv:1301.1681.
22.
J. J.
Hudson
,
D. M.
Kara
,
I. J.
Smallman
,
B. E.
Sauer
,
M. R.
Tarbutt
, and
E. A.
Hinds
, “
Improved measurement of the shape of the electron
,”
Nature
473
,
493
(
2011
).
23.
J.
Baron
,
W. C.
Campbell
,
D.
DeMille
,
J. M.
Doyle
,
G.
Gabrielse
,
Y. V.
Gurevich
,
P. W.
Hess
,
N. R.
Hutzler
,
E.
Kirilov
,
I.
Kozyryev
,
B. R.
O’Leary
,
C. D.
Panda
,
M. F.
Parsons
,
E. S.
Petrik
,
B.
Spaun
,
A. C.
Vutha
, and
A. D.
West
, “
Order of magnitude smaller limit on the electric dipole moment of the electron
,”
Science
343
,
269
(
2014
).
24.
W. B.
Cairncross
,
D. N.
Gresh
,
M.
Grau
,
K. C.
Cossel
,
T. S.
Roussy
,
Y.
Ni
,
Y.
Zhou
,
J.
Ye
, and
E. A.
Cornell
, “
Precision measurement of the electron’s electric dipole moment using trapped molecular ions
,”
Phys. Rev. Lett.
119
,
153001
(
2017
).
25.
V.
Andreev
,
D. G.
Ang
,
D.
DeMille
,
J. M.
Doyle
,
G.
Gabrielse
,
J.
Haefner
,
N. R.
Hutzler
,
Z.
Lasner
,
C.
Meisenhelder
,
B. R.
OLeary
,
C. D.
Panda
,
A. D.
West
,
E. P.
West
, and
X.
Wu
, “
Improved limit on the electric dipole moment of the electron
,”
Nature
562
,
355
(
2018
).
26.
Y.
Hao
,
L. F.
Pašteka
,
L.
Visscher
,
P.
Aggarwal
,
H. L.
Bethlem
,
A.
Boeschoten
,
A.
Borschevsky
,
M.
Denis
,
K.
Esajas
,
S.
Hoekstra
,
K.
Jungmann
,
V. R.
Marshall
,
T. B.
Meijknecht
,
M. C.
Mooij
,
R. G. E.
Timmermans
,
A.
Touwen
,
W.
Ubachs
,
L.
Willmann
,
Y.
Yin
, and
A.
Zapara
, “
High accuracy theoretical investigations of CaF, SrF, and BaF and implications for laser-cooling
,”
J. Chem. Phys.
151
,
034302
(
2019
).
27.
P.
Aggarwal
,
H. L.
Bethlem
,
A.
Borschevsky
,
M.
Denis
,
K.
Esajas
,
P. A. B.
Haase
,
Y.
Hao
,
S.
Hoekstra
,
K.
Jungmann
,
T. B.
Meijknecht
,
M. C.
Mooij
,
R. G. E.
Timmermans
,
W.
Ubachs
,
L.
Willmann
, and
A.
Zapara
, “
Measuring the electric dipole moment of the electron in BaF
,”
Eur. Phys. J. D
72
,
197
(
2018
).
28.
M. G.
Kozlov
and
L. N.
Labzowsky
, “
Parity violation effects in diatomics
,”
J. Phys. B: At., Mol. Opt. Phys.
28
,
1933
(
1995
).
29.
M. G.
Kozlov
,
A. V.
Titov
,
N. S.
Mosyagin
, and
P. V.
Souchko
, “
Enhancement of the electric dipole moment of the electron in the BaF molecule
,”
Phys. Rev. A
56
,
R3326
(
1997
).
30.
M. K.
Nayak
and
R. K.
Chaudhuri
, “
Ab initio calculation of P, T-odd interaction constant in BaF: A restricted active space configuration interaction approach
,”
J. Phys. B: At., Mol. Opt. Phys.
39
,
1231
(
2006
).
31.
M. K.
Nayak
,
R. K.
Chaudhuri
, and
B. P.
Das
, “
Ab initio calculation of the electron-nucleus scalar-pseudoscalar interaction constant Ws in heavy polar molecules
,”
Phys. Rev. A
75
,
022510
(
2007
).
32.
E. R.
Meyer
and
J. L.
Bohn
, “
Prospects for an electron electric-dipole moment search in metastable ThO and ThF+
,”
Phys. Rev. A
78
,
010502
(
2008
).
33.
M.
Fukuda
,
K.
Soga
,
M.
Senami
, and
A.
Tachibana
, “
Local spin dynamics with the electron electric dipole moment
,”
Phys. Rev. A
93
,
012518
(
2016
).
34.
K.
Gaul
and
R.
Berger
, “
Zeroth order regular approximation approach to electric dipole moment interactions of the electron
,”
J. Chem. Phys.
147
,
014109
(
2017
).
35.
K.
Gaul
,
S.
Marquardt
,
T.
Isaev
, and
R.
Berger
, “
Systematic study of relativistic and chemical enhancements of P, T-odd effects in polar diatomic radicals
,”
Phys. Rev. A
99
,
032509
(
2019
); arXiv:1805.05494.
36.
M.
Abe
,
V. S.
Prasannaa
, and
B. P.
Das
, “
Application of the finite-field coupled-cluster method to calculate molecular properties relevant to electron electric-dipole-moment searches
,”
Phys. Rev. A
97
,
032515
(
2018
).
37.
A.
Sunaga
,
V. S.
Prasannaa
,
M.
Abe
,
M.
Hada
, and
B. P.
Das
, “
Enhancement factors of parity- and time-reversal-violating effects for monofluorides
,”
Phys. Rev. A
98
,
042511
(
2018
); arXiv:1809.10131.
38.
K.
Talukdar
,
M. K.
Nayak
,
N.
Vaval
, and
S.
Pal
, “
Relativistic coupled-cluster study of BaF in search of CP violation
,”
J. Phys. B: At., Mol. Opt. Phys.
53
,
135102
(
2020
).
39.
J. M.
Brown
and
A.
Carrington
,
Rotational Spectroscopy of Diatomic Molecules
(
Cambridge University Press
,
2003
).
40.
M. R.
Tarbutt
,
J. J.
Hudson
,
B. E.
Sauer
, and
E. A.
Hinds
, “
Prospects for measuring the electric dipole moment of the electron using electrically trapped polar molecules
,”
Faraday Discuss.
142
,
37
(
2009
); arXiv:0906.4355.
41.
M.
Lemeshko
,
R. V.
Krems
,
J. M.
Doyle
, and
S.
Kais
, “
Manipulation of molecules with electromagnetic fields
,”
Mol. Phys.
111
,
1648
(
2013
); arXiv:1306.0912.
42.
T.
Fleig
and
M.
Jung
, “
Model-independent determinations of the electron EDM and the role of diamagnetic atoms
,”
J. High Energy Phys.
2018
,
12
.
43.
A.
Sunaga
,
M.
Abe
,
V. S.
Prasannaa
,
T.
Aoki
, and
M.
Hada
, “
Relativistic coupled-cluster study of diatomic metal-alkali-metal molecules for electron electric dipole moment searches
,”
J. Phys. B: At., Mol. Opt. Phys.
53
,
015102
(
2020
); arXiv:1903.11669.
44.
E. E.
Salpeter
, “
Some atomic effects of an electronic electric dipole moment
,”
Phys. Rev.
112
,
1642
(
1958
).
45.
E.
Lindroth
,
B. W.
Lynn
, and
P. G. H.
Sandars
, “
Order α2 theory of the atomic electric dipole moment due to an electric dipole moment on the electron
,”
J. Phys. B: At., Mol. Opt. Phys.
22
,
559
(
1989
).
46.
A.-M.
Mårtensson-Pendrill
and
P.
Öster
, “
Calculations of atomic electric dipole moments
,”
Phys. Scr.
36
,
444
(
1987
).
47.
Y.
Hao
,
M.
Iliaš
,
E.
Eliav
,
P.
Schwerdtfeger
,
V. V.
Flambaum
, and
A.
Borschevsky
, “
Nuclear anapole moment interaction in BaF from relativistic coupled-cluster theory
,”
Phys. Rev. A
98
,
032510
(
2018
); arXiv:1808.02771.
48.
P. A. B.
Haase
,
E.
Eliav
,
M.
Iliaš
, and
A.
Borschevsky
, “
Hyperfine structure constants on the relativistic coupled cluster level with associated uncertainties
,”
J. Phys. Chem. A
124
,
3157
(
2020
); arXiv:2002.00887.
49.
H. D.
Cohen
and
C. C. J.
Roothaan
, “
Electric dipole polarizability of atoms by the Hartree–Fock method. I. Theory for closed-shell systems
,”
J. Chem. Phys.
43
,
S34
(
1965
).
50.
L.
Visscher
,
T.
Enevoldsen
,
T.
Saue
, and
J.
Oddershede
, “
Molecular relativistic calculations of the electric field gradients at the nuclei in the hydrogen halides
,”
J. Chem. Phys.
109
,
9677
(
1998
).
51.
L.
Visscher
,
T. J.
Lee
, and
K. G.
Dyall
, “
Formulation and implementation of a relativistic unrestricted coupled-cluster method including noniterative connected triples
,”
J. Chem. Phys.
105
,
8769
(
1996
).
52.
DIRAC, a relativistic ab initio electronic structure program, Release DIRAC17, 2017, written by
L.
Visscher
,
H. J. Aa.
Jensen
,
R.
Bast
, and
T.
Saue
, with contributions from
V.
Bakken
,
K. G.
Dyall
,
S.
Dubillard
,
U.
Ekström
,
E.
Eliav
,
T.
Enevoldsen
,
E.
Faßhauer
,
T.
Fleig
,
O.
Fossgaard
,
A. S. P.
Gomes
,
E. D.
Hedegård
,
T.
Helgaker
,
J.
Henriksson
,
M.
Iliaš
,
Ch. R.
Jacob
,
S.
Knecht
,
S.
Komorovský
,
O.
Kullie
,
J. K.
Lærdahl
,
C. V.
Larsen
,
Y. S.
Lee
,
H. S.
Nataraj
,
M. K.
Nayak
,
P.
Norman
,
G.
Olejniczak
,
J.
Olsen
,
J. M. H.
Olsen
,
Y. C.
Park
,
J. K.
Pedersen
,
M.
Pernpointner
,
R.
di Remigio
,
K.
Ruud
,
P.
Sałek
,
B.
Schimmelpfennig
,
A.
Shee
,
J.
Sikkema
,
A. J.
Thorvaldsen
,
J.
Thyssen
,
J.
van Stralen
,
S.
Villaume
,
O.
Visser
,
T.
Winther
, and
S.
Yamamoto
, see http://www.diracprogram.org.
53.
T.
Saue
,
R.
Bast
,
A. S. P.
Gomes
,
H. J. A.
Jensen
,
L.
Visscher
,
I. A.
Aucar
,
R.
Di Remigio
,
K. G.
Dyall
,
E.
Eliav
,
E.
Fasshauer
,
T.
Fleig
,
L.
Halbert
,
E. D.
Hedegård
,
B.
Helmich-Paris
,
M.
Iliaš
,
C. R.
Jacob
,
S.
Knecht
,
J. K.
Laerdahl
,
M. L.
Vidal
,
M. K.
Nayak
,
M.
Olejniczak
,
J. M. H.
Olsen
,
M.
Pernpointner
,
B.
Senjean
,
A.
Shee
,
A.
Sunaga
, and
J. N. P.
van Stralen
, “
The DIRAC code for relativistic molecular calculations
,”
J. Chem. Phys.
152
,
204104
(
2020
).
54.
K. G.
Dyall
, “
Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4s, 5s, 6s, and 7s elements
,”
J. Phys. Chem. A
113
,
12638
(
2009
).
55.
K. G.
Dyall
, “
Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the light elements H–Ar
,”
Theor. Chem. Acc.
135
,
128
(
2016
).
56.
L.
Visscher
,
E.
Eliav
, and
U.
Kaldor
, “
Formulation and implementation of the relativistic Fock-space coupled cluster method for molecules
,”
J. Chem. Phys.
115
,
9720
(
2001
).
57.
See https://webbook.nist.gov/ for information on spectroscopic constants.
58.
L. B.
Knight
and
W.
Weltner
, “
Hyperfine interaction and chemical bonding in MgH, CaH, SrH, and BaH molecules
,”
J. Chem. Phys.
54
,
3875
(
1971
).
59.
I. S.
Lim
and
P.
Schwerdtfeger
, “
Four-component and scalar relativistic Douglas–Kroll calculations for static dipole polarizabilities of the alkaline-earth-metal elements and their ions from Can to Ran (n = 0, +1, +2)
,”
Phys. Rev. A
70
,
062501
(
2004
).
60.
K.
Talukdar
,
S.
Sasmal
,
M. K.
Nayak
,
N.
Vaval
, and
S.
Pal
, “
Correlation trends in the magnetic hyperfine structure of atoms: A relativistic coupled-cluster case study
,”
Phys. Rev. A
98
,
022507
(
2018
).
61.
L. V.
Skripnikov
and
A. V.
Titov
, “
Theoretical study of thorium monoxide for the electron electric dipole moment search: Electronic properties of H3Δ1 in ThO
,”
J. Chem. Phys.
142
,
024301
(
2015
).
62.
L. V.
Skripnikov
,
D. E.
Maison
, and
N. S.
Mosyagin
, “
Scalar-pseudoscalar interaction in the francium atom
,”
Phys. Rev. A
95
,
022507
(
2017
).
63.
A.
Sunaga
,
M.
Abe
,
M.
Hada
, and
B. P.
Das
, “
Relativistic coupled-cluster calculation of the electron-nucleus scalar-pseudoscalar interaction constant Ws in YbF
,”
Phys. Rev. A
93
,
042507
(
2016
).
64.
M.
Iliaš
and
T.
Saue
, “
An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation
,”
J. Chem. Phys.
126
,
064102
(
2007
).
65.
T.
Saue
, “
Relativistic Hamiltonians for chemistry
,”
AIP Conf. Proc.
1504
,
219
(
2012
).
66.
R.
Bast
,
A.
Koers
,
A. S. P.
Gomes
,
M.
Iliaš
,
L.
Visscher
,
P.
Schwerdtfeger
, and
T.
Saue
, “
Analysis of parity violation in chiral molecules
,”
Phys. Chem. Chem. Phys.
13
,
864
(
2011
).
67.
S.
Knecht
,
S.
Fux
,
R.
van Meer
,
L.
Visscher
,
M.
Reiher
, and
T.
Saue
, “
Mössbauer spectroscopy for heavy elements: A relativistic benchmark study of mercury
,”
Theor. Chem. Acc.
129
,
631
(
2011
).
68.
W.
Kutzelnigg
, “
The relativistic many body problem in molecular theory
,”
Phys. Scr.
36
,
416
(
1987
).
69.
W.
Kutzelnigg
, “
Solved and unsolved problems in relativistic quantum chemistry
,”
Chem. Phys.
395
,
16
(
2012
).
70.
M.
Pernpointner
, “
The effect of the Gaunt interaction on the electric field gradient
,”
J. Phys. B: At., Mol. Opt. Phys.
35
,
383
(
2002
).
71.
L.
Visscher
and
K. G.
Dyall
, “
Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions
,”
At. Data Nucl. Data Tables
67
,
207
(
1997
).
72.
I.
Fdez Galván
,
M.
Vacher
,
A.
Alavi
,
C.
Angeli
,
F.
Aquilante
,
J.
Autschbach
,
J. J.
Bao
,
S. I.
Bokarev
,
N. A.
Bogdanov
,
R. K.
Carlson
,
L. F.
Chibotaru
,
J.
Creutzberg
,
N.
Dattani
,
M. G.
Delcey
,
S. S.
Dong
,
A.
Dreuw
,
L.
Freitag
,
L. M.
Frutos
,
L.
Gagliardi
,
F.
Gendron
,
A.
Giussani
,
L.
González
,
G.
Grell
,
M.
Guo
,
C. E.
Hoyer
,
M.
Johansson
,
S.
Keller
,
S.
Knecht
,
G.
Kovačević
,
E.
Källman
,
G.
Li Manni
,
M.
Lundberg
,
Y.
Ma
,
S.
Mai
,
J. P.
Malhado
,
P. Å.
Malmqvist
,
P.
Marquetand
,
S. A.
Mewes
,
J.
Norell
,
M.
Olivucci
,
M.
Oppel
,
Q. M.
Phung
,
K.
Pierloot
,
F.
Plasser
,
M.
Reiher
,
A. M.
Sand
,
I.
Schapiro
,
P.
Sharma
,
C. J.
Stein
,
L. K.
Sørensen
,
D. G.
Truhlar
,
M.
Ugandi
,
L.
Ungur
,
A.
Valentini
,
S.
Vancoillie
,
V.
Veryazov
,
O.
Weser
,
T. A.
Wesołowski
,
P.-O.
Widmark
,
S.
Wouters
,
A.
Zech
,
J. P.
Zobel
, and
R.
Lindh
, “
OpenMolcas: From source code to insight
,”
J. Chem. Theory Comput.
15
,
5925
5964
(
2019
).
73.
V. E.
Ingamells
,
M. G.
Papadopoulos
, and
A. J.
Sadlej
, “
Vibrational corrections to static electric properties of diatomics by Numerov–Cooley integration
,”
Chem. Phys. Lett.
316
,
541
550
(
2000
).
74.
M.
Denis
,
P. A. B.
Haase
,
R. G. E.
Timmermans
,
E.
Eliav
,
N. R.
Hutzler
, and
A.
Borschevsky
, “
Enhancement factor for the electric dipole moment of the electron in the BaOH and YbOH molecules
,”
Phys. Rev. A
99
,
042512
(
2019
).
75.
M.
Denis
,
Y.
Hao
,
E.
Eliav
,
N. R.
Hutzler
,
M. K.
Nayak
,
R. G. E.
Timmermans
, and
A.
Borschesvky
, “
Enhanced P,T-violating nuclear magnetic quadrupole moment effects in laser-coolable molecules
,”
J. Chem. Phys.
152
,
084303
(
2020
).
76.
J. S. M.
Ginges
,
A. V.
Volotka
, and
S.
Fritzsche
, “
Ground-state hyperfine splitting for Rb, Cs, Fr, Ba+, and Ra+
,”
Phys. Rev. A
96
,
062502
(
2017
).
77.
S.
Sasmal
,
H.
Pathak
,
M. K.
Nayak
,
N.
Vaval
, and
S.
Pal
, “
Calculation of P,T-odd interaction constant of PbF using Z-vector method in the relativistic coupled-cluster framework
,”
J. Chem. Phys.
143
,
084119
(
2015
).
78.
M. G.
Kozlov
, “
Semiempirical calculations of P- and P,T-odd effects in diatomic molecules-radical
,”
Zh. Eksp. Teor. Fiz.
89
,
1933
(
1985
).
79.
C.
Ryzlewicz
and
T.
Törring
, “
Formation and microwave spectrum of the 2Σ-radical barium-monofluoride
,”
Chem. Phys.
51
,
329
(
1980
).
80.
J. J.
Hudson
,
B. E.
Sauer
,
M. R.
Tarbutt
, and
E. A.
Hinds
, “
Measurement of the electron electric dipole moment using YbF molecules
,”
Phys. Rev. Lett.
89
,
023003
(
2002
).
81.
T.
Fleig
, “P,T
-odd and magnetic hyperfine-interaction constants and excited-state lifetime for HfF+
,”
Phys. Rev. A
96
,
040502
(
2017
).

Supplementary Material

You do not currently have access to this content.