Two-dimensional Fourier transform spectroscopy is a promising technique to study ultrafast molecular dynamics. Similar to transient absorption spectroscopy, a more complete picture of the dynamics requires broadband laser pulses to observe transient changes over a large enough bandwidth, exceeding the inhomogeneous width of electronic transitions, as well as the separation between the electronic or vibronic transitions of interest. Here, we present visible broadband 2D spectra of a series of dye molecules and report vibrational coherences with frequencies up to ∼1400 cm−1 that were obtained after improvements to our existing two-dimensional Fourier transform setup [Al Haddad et al., Opt. Lett. 40, 312–315 (2015)]. The experiment uses white light from a hollow core fiber, allowing us to acquire 2D spectra with a bandwidth of 200 nm, in a range between 500 and 800 nm, and with a temporal resolution of 10–15 fs. 2D spectra of nile blue, rhodamine 800, terylene diimide, and pinacyanol iodide show vibronic spectral features with at least one vibrational mode and reveal information about structural motion via coherent oscillations of the 2D signals during the population time. For the case of pinacyanol iodide, these observations are complemented by its Raman spectrum, as well as the calculated Raman activity at the ground- and excited-state geometry.

1.
T.
Brixner
,
I. V.
Stiopkin
, and
G. R.
Fleming
, “
Tunable two-dimensional femtosecond spectroscopy
,”
Opt. Lett.
29
,
884
(
2004
).
2.
N.
Belabas
and
M.
Joffre
, “
Visible–infrared two-dimensional Fourier-transform spectroscopy
,”
Opt. Lett.
27
,
2043
(
2002
).
3.
J. D.
Hybl
,
A.
Albrecht Ferro
, and
D. M.
Jonas
, “
Two-dimensional Fourier transform electronic spectroscopy
,”
J. Chem. Phys.
115
,
6606
6622
(
2001
).
4.
V. I.
Prokhorenko
,
A.
Halpin
, and
R. J. D.
Miller
, “
Coherently-controlled two-dimensional photon echo electronic spectroscopy
,”
Opt. Express
17
,
9764
9779
(
2009
).
5.
W. P.
Aue
,
E.
Bartholdi
, and
R. R.
Ernst
, “
Two‐dimensional spectroscopy. Application to nuclear magnetic resonance
,”
J. Chem. Phys.
64
,
2229
2246
(
1976
).
6.
C.
Ruckebusch
,
M.
Sliwa
,
P.
Pernot
,
A.
de Juan
, and
R.
Tauler
, “
Comprehensive data analysis of femtosecond transient absorption spectra: A review
,”
J. Photochem. Photobiol., C
13
,
1
27
(
2012
).
7.
D.
Zigmantas
,
E. L.
Read
,
T.
Mancal
,
T.
Brixner
,
A. T.
Gardiner
,
R. J.
Cogdell
, and
G. R.
Fleming
, “
Two-dimensional electronic spectroscopy of the B800–B820 light-harvesting complex
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
12672
12677
(
2006
).
8.
J.
Dostál
,
T.
Mančal
,
R.-n.
Augulis
,
F.
Vácha
,
J.
Pšenčík
, and
D.
Zigmantas
, “
Two-dimensional electronic spectroscopy reveals ultrafast energy diffusion in chlorosomes
,”
J. Am. Chem. Soc.
134
,
11611
11617
(
2012
).
9.
E.
Thyrhaug
,
R.
Tempelaar
,
M.
Alcocer
,
K.
Žídek
,
D.
Bína
,
J.
Knoester
,
T. L. C.
Jansen
, and
D.
Zigmantas
, “
Unravelling coherences in the FMO complex
,” arXiv:1709.00318 (
2017
).
10.
V.
Butkus
,
J.
Alster
,
E.
Bašinskaitė
,
R.
Augulis
,
P.
Neuhaus
,
L.
Valkunas
,
H. L.
Anderson
,
D.
Abramavicius
, and
D.
Zigmantas
, “
Diversity of coherences and origin of electronic transitions of supermolecular nanoring
,” arXiv:1503.00870 (
2015
).
11.
O.
Bixner
,
V.
Lukeš
,
T.
Mančal
,
J.
Hauer
,
F.
Milota
,
M.
Fischer
,
I.
Pugliesi
,
M.
Bradler
,
W.
Schmid
,
E.
Riedle
 et al, “
Ultrafast photo-induced charge transfer unveiled by two-dimensional electronic spectroscopy
,”
J. Chem. Phys.
136
,
204503
(
2012
).
12.
D. M.
Jonas
, “
Two-dimensional femtosecond spectroscopy
,”
Annu. Rev. Phys. Chem.
54
,
425
463
(
2003
).
13.
S.
Ito
,
T.
Nagami
, and
M.
Nakano
, “
Density analysis of intra- and intermolecular vibronic couplings toward bath engineering for singlet fission
,”
J. Phys. Chem. Lett.
6
,
4972
4977
(
2015
).
14.
A. A.
Bakulin
,
S. E.
Morgan
,
T. B.
Kehoe
,
M. W. B.
Wilson
,
A. W.
Chin
,
D.
Zigmantas
,
D.
Egorova
, and
A.
Rao
, “
Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy
,”
Nat. Chem.
8
,
16
23
(
2016
).
15.
R.
Tempelaar
and
D. R.
Reichman
, “
Vibronic exciton theory of singlet fission. II. Two-dimensional spectroscopic detection of the correlated triplet pair state
,”
J. Chem. Phys.
146
,
174704
(
2017
).
16.
Y.
Fujihashi
,
L.
Chen
,
A.
Ishizaki
,
J.
Wang
, and
Y.
Zhao
, “
Effect of high-frequency modes on singlet fission dynamics
,”
J. Chem. Phys.
146
,
044101
(
2017
).
17.
P. J. M.
Johnson
,
A.
Halpin
,
T.
Morizumi
,
V. I.
Prokhorenko
,
O. P.
Ernst
, and
R. J. D.
Miller
, “
Local vibrational coherences drive the primary photochemistry of vision
,”
Nat. Chem.
7
,
980
986
(
2015
).
18.
M.
Liebel
,
C.
Schnedermann
,
T.
Wende
, and
P.
Kukura
, “
Principles and applications of broadband impulsive vibrational spectroscopy
,”
J. Phys. Chem. A
119
,
9506
9517
(
2015
).
19.
C.
Schnedermann
,
M.
Liebel
, and
P.
Kukura
, “
Mode-specificity of vibrationally coherent internal conversion in rhodopsin during the primary visual event
,”
J. Am. Chem. Soc.
137
,
2886
2891
(
2015
).
20.
J. M.
Womick
,
B. A.
West
,
N. F.
Scherer
, and
A. M.
Moran
, “
Vibronic effects in the spectroscopy and dynamics of C-phycocyanin
,”
J. Phys. B: At., Mol. Opt. Phys.
45
,
154016
(
2012
).
21.
D. M.
Jonas
, “
Vibrational and nonadiabatic coherence in 2D electronic spectroscopy, the Jahn–Teller effect, and energy transfer
,”
Annu. Rev. Phys. Chem.
69
,
327
352
(
2018
).
22.
I.
Pugliesi
,
H.
Langhals
,
H.
Kauffmann
, and
E.
Riedle
, “
New perspectives on ultrafast Förster resonant energy transfer
,”
EPJ Web Conf.
41
,
05015
(
2013
).
23.
F. V. A.
Camargo
,
H. L.
Anderson
,
S. R.
Meech
, and
I. A.
Heisler
, “
Time-resolved twisting dynamics in a porphyrin dimer characterized by two-dimensional electronic spectroscopy
,”
J. Phys. Chem. B
119
,
14660
14667
(
2015
).
24.
F. V. A.
Camargo
,
C. R.
Hall
,
H. L.
Anderson
,
S. R.
Meech
, and
I. A.
Heisler
, “
Time resolved structural dynamics of butadiyne-linked porphyrin dimers
,”
Struct. Dyn.
3
,
023608
(
2016
).
25.
W.
Xiong
,
J. E.
Laaser
,
P.
Paoprasert
,
R. A.
Franking
,
R. J.
Hamers
,
P.
Gopalan
, and
M. T.
Zanni
, “
Transient 2D IR spectroscopy of charge injection in dye-sensitized nanocrystalline thin films
,”
J. Am. Chem. Soc.
131
,
18040
18041
(
2009
).
26.
J.
Dostál
,
B.
Benešová
, and
T.
Brixner
, “
Two-dimensional electronic spectroscopy can fully characterize the population transfer in molecular systems
,”
J. Chem. Phys.
145
,
124312
(
2016
).
27.
A.
Gelzinis
,
R.
Augulis
,
V.
Butkus
,
B.
Robert
, and
L.
Valkunas
, “
Two-dimensional spectroscopy for non-specialists
,”
Biochim. Biophys. Acta, Bioenerg.
1860
,
271
285
(
2019
).
28.
R. D.
Mehlenbacher
,
T. J.
McDonough
,
M.
Grechko
,
M.-Y.
Wu
,
M. S.
Arnold
, and
M. T.
Zanni
, “
Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy
,”
Nat. Commun.
6
,
6732
(
2015
).
29.
N. M.
Kearns
,
A. C.
Jones
,
M. B.
Kunz
,
R. T.
Allen
,
J. T.
Flach
, and
M. T.
Zanni
, “
Two-dimensional white-light spectroscopy using supercontinuum from an all-normal dispersion photonic crystal fiber pumped by a 70 MHz Yb fiber oscillator
,”
J. Phys. Chem. A
123
,
3046
3055
(
2019
).
30.
M. Th.
Hassan
,
T. T.
Luu
,
A.
Moulet
,
O.
Raskazovskaya
,
P.
Zhokhov
,
M.
Garg
,
N.
Karpowicz
,
A. M.
Zheltikov
,
V.
Pervak
,
F.
Krausz
 et al, “
Optical attosecond pulses and tracking the nonlinear response of bound electrons
,”
Nature
530
,
66
70
(
2016
).
31.
Y.
Song
,
A.
Konar
,
R.
Sechrist
,
V. P.
Roy
,
R.
Duan
,
J.
Dziurgot
,
V.
Policht
,
Y. A.
Matutes
,
K. J.
Kubarych
, and
J. P.
Ogilvie
, “
Multispectral multidimensional spectrometer spanning the ultraviolet to the mid-infrared
,”
Rev. Sci. Instrum.
90
,
013108
(
2019
).
32.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
1995
).
33.
S.
Mukamel
, “
Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations
,”
Annu. Rev. Phys. Chem.
51
,
691
729
(
2000
).
34.
M.
Cho
, “
Coherent two-dimensional optical spectroscopy
,”
Chem. Rev.
108
,
1331
1418
(
2008
).
35.
S.-H.
Shim
and
M. T.
Zanni
, “
How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping
,”
Phys. Chem. Chem. Phys.
11
,
748
761
(
2009
).
36.
P.
Hamm
and
M. T.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
, 1st ed. (
Cambridge University Press
,
2011
).
37.
L.
Valkunas
,
D.
Abramavicius
, and
T.
Mančal
,
Molecular Excitation Dynamics and Relaxation
(
Wiley-VCH
,
Weinheim
,
2013
).
38.
F.
Šanda
,
V.
Perlík
,
C. N.
Lincoln
, and
J.
Hauer
, “
Center line slope analysis in two-dimensional electronic spectroscopy
,”
J. Phys. Chem. A
119
,
10893
10909
(
2015
).
39.
G. D.
Scholes
, “
Quantum-coherent electronic energy transfer: Did nature think of it first?
,”
J. Phys. Chem. Lett.
1
,
2
8
(
2010
).
40.
H.-G.
Duan
,
V. I.
Prokhorenko
,
R. J.
Cogdell
,
K.
Ashraf
,
A. L.
Stevens
,
M.
Thorwart
, and
R. J. D.
Miller
, “
Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
8493
8498
(
2017
).
41.
V.
Tiwari
,
W. K.
Peters
, and
D. M.
Jonas
, “
Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer
,”
J. Chem. Phys.
147
,
154308
(
2017
).
42.
E. C.
Wu
,
E. A.
Arsenault
,
P.
Bhattacharyya
,
N. H. C.
Lewis
, and
G. R.
Fleming
, “
Two-dimensional electronic vibrational spectroscopy and ultrafast excitonic and vibronic photosynthetic energy transfer
,”
Faraday Discuss.
216
,
116
132
(
2019
).
43.
D.
Polli
,
P.
Altoè
,
O.
Weingart
,
K. M.
Spillane
,
C.
Manzoni
,
D.
Brida
,
G.
Tomasello
,
G.
Orlandi
,
P.
Kukura
,
R. A.
Mathies
 et al, “
Conical intersection dynamics of the primary photoisomerization event in vision
,”
Nature
467
,
440
443
(
2010
).
44.
M.
Liebel
and
P.
Kukura
, “
Broad-band impulsive vibrational spectroscopy of excited electronic states in the time domain
,”
J. Phys. Chem. Lett.
4
,
1358
1364
(
2013
).
45.
R.
Monni
,
G.
Capano
,
G.
Auböck
,
H. B.
Gray
,
A.
Vlček
,
I.
Tavernelli
, and
M.
Chergui
, “
Vibrational coherence transfer in the ultrafast intersystem crossing of a diplatinum complex in solution
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
E6396
E6403
(
2018
).
46.
V.
Butkus
,
L.
Valkunas
, and
D.
Abramavicius
, “
Molecular vibrations-induced quantum beats in two-dimensional electronic spectroscopy
,”
J. Chem. Phys.
137
,
044513
(
2012
).
47.
J. C.
Dean
and
G. D.
Scholes
, “
Coherence spectroscopy in the condensed phase: Insights into molecular structure, environment, and interactions
,”
Acc. Chem. Res.
50
,
2746
2755
(
2017
).
48.
P.
Nuernberger
,
S.
Ruetzel
, and
T.
Brixner
, “
Multidimensional electronic spectroscopy of photochemical reactions
,”
Angew. Chem., Int. Ed.
54
,
11368
11386
(
2015
).
49.
D. B.
Turner
,
K. E.
Wilk
,
P. M. G.
Curmi
, and
G. D.
Scholes
, “
Comparison of electronic and vibrational coherence measured by two-dimensional electronic spectroscopy
,”
J. Phys. Chem. Lett.
2
,
1904
1911
(
2011
).
50.
V.
Butkus
,
D.
Zigmantas
,
L.
Valkunas
, and
D.
Abramavicius
, “
Vibrational vs. electronic coherences in 2D spectrum of molecular systems
,”
Chem. Phys. Lett.
545
,
40
43
(
2012
).
51.
F.
Ma
and
A.
Yartsev
, “
Ultrafast photoisomerization of pinacyanol: Watching an excited state reaction transiting from barrier to barrierless forms
,”
RSC Adv.
6
,
45210
45218
(
2016
).
52.
A.
Al Haddad
,
A.
Chauvet
,
J.
Ojeda
,
C.
Arrell
,
F.
van Mourik
,
G.
Auböck
, and
M.
Chergui
, “
Set-up for broadband Fourier-transform multidimensional electronic spectroscopy
,”
Opt. Lett.
40
,
312
315
(
2015
).
53.
M.
Nisoli
,
S.
Stagira
,
S.
De Silvestri
,
O.
Svelto
,
S.
Sartania
,
Z.
Cheng
,
M.
Lenzner
,
C.
Spielmann
, and
F.
Krausz
, “
A novel-high energy pulse compression system: Generation of multigigawatt sub-5-fs pulses
,”
Appl. Phys. B: Lasers Opt.
65
,
189
196
(
1997
).
54.
M.
Schnürer
,
Z.
Cheng
,
S.
Sartania
,
M.
Hentschel
,
G.
Tempea
,
T.
Brabec
, and
F.
Krausz
, “
Guiding and high-harmonic generation of sub-10-fs pulses in hollow-core fibers at 1015 W/cm2
,”
Appl. Phys. B: Lasers Opt.
67
,
263
266
(
1998
).
55.
T.
Witting
,
F.
Frank
,
C. A.
Arrell
,
W. A.
Okell
,
J. P.
Marangos
, and
J. W. G.
Tisch
, “
Characterization of high-intensity sub-4-fs laser pulses using spatially encoded spectral shearing interferometry
,”
Opt. Lett.
36
,
1680
(
2011
).
56.
T.
Witting
,
F.
Frank
,
W. A.
Okell
,
C. A.
Arrell
,
J. P.
Marangos
, and
J. W. G.
Tisch
, “
Sub-4-fs laser pulse characterization by spatially resolved spectral shearing interferometry and attosecond streaking
,”
J. Phys. B: At., Mol. Opt. Phys.
45
,
074014
(
2012
).
57.
W. A.
Okell
,
T.
Witting
,
D.
Fabris
,
D.
Austin
,
M.
Bocoum
,
F.
Frank
,
A.
Ricci
,
A.
Jullien
,
D.
Walke
,
J. P.
Marangos
 et al, “
Carrier-envelope phase stability of hollow fibers used for high-energy few-cycle pulse generation
,”
Opt. Lett.
38
,
3918
(
2013
).
58.
B.
Alonso
,
M.
Miranda
,
F.
Silva
,
V.
Pervak
,
J.
Rauschenberger
,
J.
San Román
,
Í. J.
Sola
, and
H.
Crespo
, “
Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains
,”
Appl. Phys. B
112
,
105
114
(
2013
).
59.
L.
Mewes
,
Non-Equilibrium Dynamics of Di-Platinum Complexes and Molecular Dyes in Solution: Insights from Transient Absorption and Two-Dimensional Fourier Transform Spectroscopy
(
EPFL
,
Lausanne
,
2019
).
60.
M. K.
Yetzbacher
,
N.
Belabas
,
K. A.
Kitney
, and
D. M.
Jonas
, “
Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra
,”
J. Chem. Phys.
126
,
044511
(
2007
).
61.
R.
Augulis
and
D.
Zigmantas
, “
Detector and dispersive delay calibration issues in broadband 2D electronic spectroscopy
,”
J. Opt. Soc. Am. B
30
,
1770
(
2013
).
62.
R. M.
Mersereau
and
A. V.
Oppenheim
, “
Digital reconstruction of multidimensional signals from their projections
,”
Proc. IEEE
62
,
1319
1338
(
1974
).
63.
J. N.
Sweetser
,
D. N.
Fittinghoff
, and
R.
Trebino
, “
Transient-grating frequency-resolved optical gating
,”
Opt. Lett.
22
,
519
521
(
1997
).
64.
L.
Wei
and
W.
Min
, “
Electronic preresonance stimulated Raman scattering microscopy
,”
J. Phys. Chem. Lett.
9
,
4294
4301
(
2018
).
65.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
 et al, Gaussian 16, Revision C.01,
2016
.
66.
NIST Computational Chemistry Comparison and Benchmark Database
, NIST Standard Reference Database Number 101 Release 21, edited by
R. D.
Johnson
 III
,
2020
.
67.
O.
Bräm
, “
Ultrafast broadband fluorescence up-conversion study of the electronic relaxation of metalloporphyrins
,”
J. Phys. Chem. A
8
,
1461
(
2019
).
68.
O.
Bräm
,
F.
Messina
,
A. M.
El-Zohry
,
A.
Cannizzo
, and
M.
Chergui
, “
Polychromatic femtosecond fluorescence studies of metal–polypyridine complexes in solution
,”
Chem. Phys.
393
,
51
57
(
2012
).
69.
A.
Galestian Pour
,
C. N.
Lincoln
,
V.
Perlík
,
F.
Šanda
, and
J.
Hauer
, “
Anharmonic vibrational effects in linear and two-dimensional electronic spectra
,”
Phys. Chem. Chem. Phys.
19
,
24752
24760
(
2017
).
70.
L.
Mewes
, MultidimensionalSpectroscopy.Jl,
2020
.
71.
S.
Krämer
,
D.
Plankensteiner
,
L.
Ostermann
, and
H.
Ritsch
, “
QuantumOptics.jl: A Julia framework for simulating open quantum systems
,”
Comput. Phys. Commun.
227
,
109
116
(
2018
).
72.
J. A. B.
Ferreira
and
S. M. B.
Costa
, “
Activationless nonradiative decay in rhodamines: Role of NH and lower frequency vibrations in solvent kinetic isotope effects
,”
Chem. Phys.
321
,
197
208
(
2006
).
73.
E.
Thyrhaug
,
S.
Krause
,
A.
Perri
,
G.
Cerullo
,
D.
Polli
,
T.
Vosch
, and
J.
Hauer
, “
Single-molecule excitation–emission spectroscopy
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
4064
4069
(
2019
).
74.
P.
Kukura
,
D. W.
McCamant
, and
R. A.
Mathies
, “
Femtosecond stimulated Raman spectroscopy
,”
Annu. Rev. Phys. Chem.
58
,
461
488
(
2007
).
75.
N.
Christensson
,
B.
Dietzek
,
A.
Yartsev
, and
T.
Pullerits
, “
Electronic photon echo spectroscopy and vibrations
,”
Vib. Spectrosc.
53
,
2
5
(
2010
).
76.
V.
Sundstrom
and
T.
Gillbro
, “
Transient absorption spectra of pinacyanol and cyanine photoisomers obtained with a sync-pumped picosecond dye laser and independently tunable probe light
,”
Chem. Phys. Lett.
94
,
580
584
(
1983
).
77.
A.
Yartsev
,
J.-L.
Alvarez
,
U.
Åberg
, and
V.
Sundström
, “
Overdamped wavepacket motion along a barrierless potential energy surface in excited state isomerization
,”
Chem. Phys. Lett.
243
,
281
289
(
1995
).
78.
W.
Werncke
,
T. J.
Tschol
,
H.-J.
Weigmann
,
M.
Pfeiffer
,
A.
Lau
,
S.
Rentsch
, and
A.
Graness
, “
Photoisomerization studies of pinacyanol using nanosecond time-resolved resonance cars
,”
J. Raman Spectrosc.
18
,
323
326
(
1987
).
79.
M.
Hashimoto
,
T.
Araki
, and
S.
Kawata
, “
Molecular vibration imaging in the fingerprint region by use of coherent anti-Stokes Raman scattering microscopy with a collinear configuration
,”
Opt. Lett.
25
,
1768
(
2000
).
80.
N.
Dudovich
,
D.
Oron
, and
Y.
Silberberg
, “
Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region
,”
J. Chem. Phys.
118
,
9208
9215
(
2003
).
81.
W. W.
Parson
,
Modern Optical Spectroscopy
, 2nd ed. (
Springer
,
2015
), ISBN: 978-3-662-46776-3.
82.
J.-P.
Yang
and
R. H.
Callender
, “
The resonance Raman spectra of some cyanine dyes
,”
J. Raman Spectrosc.
16
,
319
321
(
1985
).
83.
J.
Segarra-Martí
,
S.
Mukamel
,
M.
Garavelli
,
A.
Nenov
, and
I.
Rivalta
, “
Towards accurate simulation of two-dimensional electronic spectroscopy
,”
Top. Curr. Chem.
376
,
24
(
2018
).
84.
T.
Begušić
and
J.
Vaníček
, “
On-the-fly ab initio semiclassical evaluation of third-order response functions for two-dimensional electronic spectroscopy
,”
J. Chem. Phys.
153
,
184110
(
2020
).
85.
I.
Conti
,
G.
Cerullo
,
A.
Nenov
, and
M.
Garavelli
, “
Ultrafast spectroscopy of photoactive molecular systems from first principles: Where we stand today and where we are going
,”
J. Am. Chem. Soc.
23
,
16117
(
2020
).
86.
M. K.
Lawless
and
R. A.
Mathies
, “
Excited‐state structure and electronic dephasing time of nile blue from absolute resonance Raman intensities
,”
J. Chem. Phys.
96
,
8037
8045
(
1992
).
87.
M. H.
Stockett
,
J.
Houmøller
, and
S.
Brøndsted Nielsen
, “
Nile blue shows its true colors in gas-phase absorption and luminescence ion spectroscopy
,”
J. Chem. Phys.
145
,
104303
(
2016
).
88.
H. L.
Fragnito
,
J.-Y.
Bigot
,
P. C.
Becker
, and
C. V.
Shank
, “
Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse
,”
Chem. Phys. Lett.
160
,
101
(
1989
).
89.
W. T.
Pollard
,
H. L.
Fragnito
,
J.-Y.
Bigot
,
C. V.
Shank
, and
R. A.
Mathies
, “
Quantum-mechanical theory for 6 fs dynamic absorption spectroscopy and its application to nile blue
,”
Chem. Phys. Lett.
168
,
239
245
(
1990
).
90.
J.
Hauer
,
T.
Buckup
, and
M.
Motzkus
, “
Enhancement of molecular modes by electronically resonant multipulse excitation: Further progress towards mode selective chemistry
,”
J. Chem. Phys.
125
,
061101
(
2006
).
91.
D.
Egorova
,
M. F.
Gelin
, and
W.
Domcke
, “
Analysis of cross peaks in two-dimensional electronic photon-echo spectroscopy for simple models with vibrations and dissipation
,”
J. Chem. Phys.
126
,
074314
(
2007
).
92.
A.
Reigue
,
B.
Auguié
,
P. G.
Etchegoin
, and
E. C.
Le Ru
, “
CW measurements of resonance Raman profiles, line-widths, and cross-sections of fluorescent dyes: Application to nile blue A in water and ethanol: Measuring resonance Raman spectra of fluorophores
,”
J. Raman Spectrosc.
44
,
573
581
(
2013
).
93.
B.
Dietzek
,
N.
Christensson
,
P.
Kjellberg
,
T.
Pascher
,
T.
Pullerits
, and
A.
Yartsev
, “
Appearance of intramolecular high-frequency vibrations in two-dimensional, time-integrated three-pulse photon echo data
,”
Phys. Chem. Chem. Phys.
9
,
701
710
(
2007
).
94.
S.
Malkmus
,
R.
Dürr
,
C.
Sobotta
,
H.
Pulvermacher
,
W.
Zinth
, and
M.
Braun
, “
Chirp dependence of wave packet motion in oxazine 1
,”
J. Phys. Chem. A
109
,
10488
10492
(
2005
).
95.
T. J.
Quincy
,
M. S.
Barclay
,
M.
Caricato
, and
C. G.
Elles
, “
Probing dynamics in higher-lying electronic states with resonance-enhanced femtosecond stimulated Raman spectroscopy
,”
J. Phys. Chem. A
122
,
8308
8319
(
2018
).
96.
Y.
Nagasawa
,
A.
Watanabe
,
H.
Takikawa
, and
T.
Okada
, “
Solute dependence of three pulse photon echo peak shift measurements in methanol solution
,”
J. Phys. Chem. A
107
,
632
641
(
2003
).
97.
M.
Marazzi
,
H.
Gattuso
, and
A.
Monari
, “
Nile blue and nile red optical properties predicted by TD-DFT and CASPT2 methods: Static and dynamic solvent effects
,”
Theor. Chem. Acc.
135
,
57
(
2016
).
98.
H.
Sato
,
M.
Kawasaki
,
K.
Kasatani
, and
M.-a.
Katsumata
, “
Raman spectra of some indo-, thia- and selena-carbocyanine dyes
,”
J. Raman Spectrosc.
19
,
129
132
(
1988
).
99.
B.
Spokoyny
,
C. J.
Koh
, and
E.
Harel
, “
Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy
,”
Opt. Lett.
40
,
1014
(
2015
).
100.
X.
Ma
,
J.
Dostál
, and
T.
Brixner
, “
Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression
,”
Opt. Express
24
,
20781
(
2016
).
101.
L. A.
Bizimana
,
J.
Brazard
,
W. P.
Carbery
,
T.
Gellen
, and
D. B.
Turner
, “
Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy
,”
J. Chem. Phys.
143
,
164203
(
2015
).
102.
M.
Son
,
S.
Mosquera-Vázquez
, and
G. S.
Schlau-Cohen
, “
Ultrabroadband 2D electronic spectroscopy with high-speed, shot-to-shot detection
,”
Opt. Express
25
,
18950
(
2017
).
103.
N. M.
Kearns
,
R. D.
Mehlenbacher
,
A. C.
Jones
, and
M. T.
Zanni
, “
Broadband 2D electronic spectrometer using white light and pulse shaping: Noise and signal evaluation at 1 and 100 kHz
,”
Opt. Express
25
,
7869
(
2017
).
104.
N.
Krebs
,
I.
Pugliesi
,
J.
Hauer
, and
E.
Riedle
, “
Two-dimensional Fourier transform spectroscopy in the ultraviolet with sub-20 fs pump pulses and 250–720 Nm supercontinuum probe
,”
New J. Phys.
15
,
085016
(
2013
).
105.
R. B.
Varillas
,
A.
Candeo
,
D.
Viola
,
M.
Garavelli
,
S.
De Silvestri
,
G.
Cerullo
, and
C.
Manzoni
, “
Microjoule-level, tunable sub-10 fs UV pulses by broadband sum-frequency generation
,”
Opt. Lett.
39
,
3849
(
2014
).
106.
R.
Borrego-Varillas
,
A.
Oriana
,
L.
Ganzer
,
A.
Trifonov
,
I.
Buchvarov
,
C.
Manzoni
, and
G.
Cerullo
, “
Two-dimensional electronic spectroscopy in the ultraviolet by a birefringent delay line
,”
Opt. Express
24
,
28491
(
2016
).

Supplementary Material

You do not currently have access to this content.