The method of increments and frozen natural orbital (MI-FNO) framework is introduced to help expedite the application of noisy, intermediate-scale quantum (NISQ) devices for quantum chemistry simulations. The MI-FNO framework provides a systematic reduction of the occupied and virtual orbital spaces for quantum chemistry simulations. The correlation energies of the resulting increments from the MI-FNO reduction can then be solved by various algorithms, including quantum algorithms such as the phase estimation algorithm and the variational quantum eigensolver (VQE). The unitary coupled-cluster singles and doubles VQE framework is used to obtain correlation energies for the case of small molecules (i.e., BeH2, CH4, NH3, H2O, and HF) using the cc-pVDZ basis set. The quantum resource requirements are estimated for a constrained geometry complex catalyst that is utilized in industrial settings for the polymerization of α-olefins. We show that the MI-FNO approach provides a significant reduction in the quantum bit (qubit) requirements relative to the full system simulations. We propose that the MI-FNO framework can create scalable examples of quantum chemistry problems that are appropriate for assessing the progress of NISQ devices.

1.
M.
Head-Gordon
and
E.
Artacho
,
Phys. Today
61
(
4
),
58
(
2008
).
2.
Y.
Manin
,
Computable and Noncomputable
(
Sovetskoye Radio
,
Moscow
,
1980
), pp.
13
15
(in Russian).
3.
R. P.
Feynman
,
Int. J. Theor. Phys.
21
,
467
(
1982
).
5.
A.
Aspuru-Guzik
,
A. D.
Dutoi
,
P. J.
Love
, and
M.
Head-Gordon
,
Science
309
,
1704
(
2005
).
6.
A.
Peruzzo
,
J.
McClean
,
P.
Shadbolt
,
M.-H.
Yung
,
X.-Q.
Zhou
,
P. J.
Love
,
A.
Aspuru-Guzik
, and
J. L.
O’Brien
,
Nat. Commun.
5
,
4213
(
2014
).
7.
C.
Hempel
,
C.
Maier
,
J.
Romero
,
J.
McClean
,
T.
Monz
,
H.
Shen
,
P.
Jurcevic
,
B. P.
Lanyon
,
P.
Love
,
R.
Babbush
,
A.
Aspuru-Guzik
,
R.
Blatt
, and
C. F.
Roos
,
Phys. Rev. X
8
,
031022
(
2018
).
8.
P. J. J.
O’Malley
,
R.
Babbush
,
I. D.
Kivlichan
,
J.
Romero
,
J. R.
McClean
,
R.
Barends
,
J.
Kelly
,
P.
Roushan
,
A.
Tranter
,
N.
Ding
,
B.
Campbell
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
A.
Dunsworth
,
A. G.
Fowler
,
E.
Jeffrey
,
E.
Lucero
,
A.
Megrant
,
J. Y.
Mutus
,
M.
Neeley
,
C.
Neill
,
C.
Quintana
,
D.
Sank
,
A.
Vainsencher
,
J.
Wenner
,
T. C.
White
,
P. V.
Coveney
,
P. J.
Love
,
H.
Neven
,
A.
Aspuru-Guzik
, and
J. M.
Martinis
,
Phys. Rev. X
6
,
031007
(
2016
).
9.
A.
Kandala
,
A.
Mezzacapo
,
K.
Temme
,
M.
Takita
,
M.
Brink
,
J. M.
Chow
, and
J. M.
Gambetta
,
Nature
549
,
242
(
2017
).
10.
Y.
Nam
,
J.-S.
Chen
,
N. C.
Pisenti
,
K.
Wright
,
C.
Delaney
,
D.
Maslov
,
K. R.
Brown
,
S.
Allen
,
J. M.
Amini
,
J.
Apisdorf
,
K. M.
Beck
,
A.
Blinov
,
V.
Chaplin
,
M.
Chmielewski
,
C.
Collins
,
S.
Debnath
,
K. M.
Hudek
,
A. M.
Ducore
,
M.
Keesan
,
S. M.
Kreikemeier
,
J.
Mizrahi
,
P.
Solomon
,
M.
Williams
,
J. D.
Wong-Campos
,
D.
Moehring
,
D. C.
Monroe
, and
J.
Kim
, “
Ground-state energy estimation of the water molecule on a trapped ion quantum computer
,”
Npj Quantum Inf.
6
,
33
(
2020
).
11.
See ibm.com/quantum-computing for IBM Quantum Computing.
12.
See https://quantumai.google for Google AI Quantum.
13.
14.
See https://rigetti.com for Rigetti Computing.
15.
See https://quantumcircuits.com for Quantum Circuits, Inc.
16.
See https://ionq.com for IonQ—Trapped Ion Quantum Computing.
17.
See https://honeywell.com/us/en/company/quantum for “Honeywell Quantum Solutions.”
18.
F.
Arute
,
K.
Arya
,
R.
Babbush
,
D.
Bacon
,
J. C.
Bardin
,
R.
Barends
,
R.
Biswas
,
S.
Boixo
,
F. G. S. L.
Brandao
,
D. A.
Buell
,
B.
Burkett
,
Y.
Chen
,
Z.
Chen
,
B.
Chiaro
,
R.
Collins
,
W.
Courtney
,
A.
Dunsworth
,
E.
Farhi
,
B.
Foxen
,
A.
Fowler
,
C.
Gidney
,
M.
Giustina
,
R.
Graff
,
K.
Guerin
,
S.
Habegger
,
M. P.
Harrigan
,
M. J.
Hartmann
,
A.
Ho
,
M.
Hoffmann
,
T.
Huang
,
T. S.
Humble
,
S. V.
Isakov
,
E.
Jeffrey
,
Z.
Jiang
,
D.
Kafri
,
K.
Kechedzhi
,
J.
Kelly
,
P. V.
Klimov
,
S.
Knysh
,
A.
Korotkov
,
F.
Kostritsa
,
D.
Landhuis
,
M.
Lindmark
,
E.
Lucero
,
D.
Lyakh
,
S.
Mandrà
,
J. R.
McClean
,
M.
McEwen
,
A.
Megrant
,
X.
Mi
,
K.
Michielsen
,
M.
Mohseni
,
J.
Mutus
,
O.
Naaman
,
M.
Neeley
,
C.
Neill
,
M. Y.
Niu
,
E.
Ostby
,
A.
Petukhov
,
J. C.
Platt
,
C.
Quintana
,
E. G.
Rieffel
,
P.
Roushan
,
N. C.
Rubin
,
D.
Sank
,
K. J.
Satzinger
,
V.
Smelyanskiy
,
K. J.
Sung
,
M. D.
Trevithick
,
A.
Vainsencher
,
B.
Villalonga
,
T.
White
,
Z. J.
Yao
,
P.
Yeh
,
A.
Zalcman
,
H.
Neven
, and
J. M.
Martinis
,
Nature
574
,
505
(
2019
).
20.
M.
Ganzhorn
,
D.
Egger
,
P.
Barkoutsos
,
P.
Ollitrault
,
G.
Salis
,
N.
Moll
,
M.
Roth
,
A.
Fuhrer
,
P.
Mueller
,
S.
Woerner
,
I.
Tavernelli
, and
S.
Filipp
,
Phys. Rev. Appl.
11
,
044092
(
2019
).
21.
K. M.
Nakanishi
,
K.
Mitarai
, and
K.
Fujii
,
Phys. Rev. Res.
1
,
033062
(
2019
).
22.
S.
Matsuura
,
T.
Yamazaki
,
V.
Senicourt
,
L.
Huntington
, and
A.
Zaribafiyan
, “
VanQver: The variational and adiabatically navigated quantum eigensolver
,”
New J. Phys.
22
,
053023
(
2020
).
23.
J.
Romero
,
R.
Babbush
,
J. R.
McClean
,
C.
Hempel
,
P.
Love
, and
A.
Aspuru-Guzik
, “
Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz
,”
Quantum Sci. Technol.
4
,
014008
(
2018
).
24.
R.
Babbush
,
N.
Wiebe
,
J.
McClean
,
J.
McClain
,
H.
Neven
, and
G. K.-L.
Chan
,
Phys. Rev. X
8
,
011044
(
2018
).
25.
I. D.
Kivlichan
,
J.
McClean
,
N.
Wiebe
,
C.
Gidney
,
A.
Aspuru-Guzik
,
G. K.-L.
Chan
, and
R.
Babbush
,
Phys. Rev. Lett.
120
,
110501
(
2018
).
26.
H. R.
Grimsley
,
S. E.
Economou
,
E.
Barnes
, and
N. J.
Mayhall
,
Nat. Commun.
10
,
3007
(
2019
).
27.
I. G.
Ryabinkin
,
T.-C.
Yen
,
S. N.
Genin
, and
A. F.
Izmaylov
,
J. Chem. Theory Comput.
14
,
6317
(
2018
).
28.
I. G.
Ryabinkin
,
T.-C.
Yen
,
S. N.
Genin
, and
A. F.
Izmaylov
, “
Qubit coupled-cluster method: A systematic approach to quantum chemistry on a quantum computer
,”
J. Chem. Theory Comput.
14
,
6317
(
2018
).
29.
B.
Bauer
,
D.
Wecker
,
A. J.
Millis
,
M. B.
Hastings
, and
M.
Troyer
,
Phys. Rev. X
6
,
031045
(
2016
).
30.
N. C.
Rubin
, “
A hybrid classical/quantum approach for large-scale studies of quantum systems with density matrix embedding theory
,” arXiv:1610.06910 (
2016
).
31.
M.
Kühn
,
S.
Zanker
,
P.
Deglmann
,
M.
Marthaler
, and
H.
Weiß
,
J. Chem. Theory Comput.
15
,
4764
(
2019
).
32.
T.
Yamazaki
,
S.
Matsuura
,
A.
Narimani
,
A.
Saidmuradov
, and
A.
Zaribafiyan
, “
Towards the practical application of near-term quantum computers in quantum chemistry simulations: A problem decomposition approach
,” arXiv:1806.01305 (
2018
).
33.
Q.
Gao
,
H.
Nakamura
,
T. P.
Gujarati
,
G. O.
Jones
,
J. E.
Rice
,
S. P.
Wood
,
M.
Pistoia
,
J. M.
Garcia
, and
N.
Yamamoto
,
J. Phys. Chem. A
125
,
1827
(
2021
).
34.
Y.
Mochizuki
,
K.
Okuwaki
,
T.
Kato
, and
Y.
Minato
, “
Reduction of orbital space for molecular orbital calculations with quantum computation simulator for educations
,” chemRxiv:9863810.v1 (
2019
).
35.
J. F.
Gonthier
,
M. D.
Radin
,
C.
Buda
,
E. J.
Doskocil
,
C. M.
Abuan
, and
J.
Romero
, “
Identifying challenges towards practical quantum advantage through resource estimation: The measurement roadblock in the variational quantum eigensolver
,” arXiv:2012.04001 (
2020
).
36.
O.
Sinanoğlu
, “
Many-electron theory of atoms, molecules and their interactions
,” in
Advances in Chemical Physics
(
John Wiley & Sons, Ltd.
,
1964
), pp.
315
412
.
37.
R. K.
Nesbet
, “
Electronic correlation in atoms and molecules
,” in
Advances in Chemical Physics
(
John Wiley & Sons, Ltd.
,
1965
), pp.
321
363
.
38.
R.
Ahlrichs
and
W.
Kutzelnigg
,
J. Chem. Phys.
48
,
1819
(
1968
).
39.
M. A.
Collins
and
R. P. A.
Bettens
,
Chem. Rev.
115
,
5607
(
2015
).
40.
K.
Raghavachari
and
A.
Saha
,
Chem. Rev.
115
,
5643
(
2015
).
41.
Q.
Sun
and
G. K.-L.
Chan
,
Acc. Chem. Res.
49
,
2705
(
2016
).
42.
A.
Goez
and
J.
Neugebauer
, “
Embedding methods in quantum chemistry
,” in
Frontiers of Quantum Chemistry
, edited by
M. J.
Wójcik
,
H.
Nakatsuji
,
B.
Kirtman
, and
Y.
Ozaki
(
Springer Singapore
,
Singapore
,
2018
), pp.
139
179
.
43.
44.
45.
46.
T. L.
Barr
and
E. R.
Davidson
,
Phys. Rev. A
1
,
644
(
1970
).
47.
C.
Sosa
,
J.
Geertsen
,
G. W.
Trucks
,
R. J.
Bartlett
, and
J. A.
Franz
,
Chem. Phys. Lett.
159
,
148
(
1989
).
48.
A. G.
Taube
and
R. J.
Bartlett
,
Collect. Czech. Chem. Commun.
70
,
837
(
2005
).
49.
A. G.
Taube
and
R. J.
Bartlett
,
J. Chem. Phys.
128
,
164101
(
2008
).
50.
A. G.
Taube
and
R. J.
Bartlett
,
J. Chem. Phys.
128
,
044110
(
2008
).
51.
H. J. A.
Jensen
,
P.
Jørgensen
,
H.
Ågren
, and
J.
Olsen
,
J. Chem. Phys.
88
,
3834
(
1988
).
52.
P. M.
Zimmerman
,
J. Chem. Phys.
146
,
104102
(
2017
).
53.
P. M.
Zimmerman
,
J. Phys. Chem. A
121
,
4712
(
2017
).
54.
P. M.
Zimmerman
,
J. Chem. Phys.
146
,
224104
(
2017
).
55.
56.
M.
Mödll
,
M.
Dolg
,
P.
Fulde
, and
H.
Stoll
,
J. Chem. Phys.
106
,
1836
(
1997
).
57.
V.
Bezugly
and
U.
Birkenheuer
,
Chem. Phys. Lett.
399
,
57
(
2004
).
58.
H.
Stoll
,
B.
Paulus
, and
P.
Fulde
,
J. Chem. Phys.
123
,
144108
(
2005
).
59.
J.
Friedrich
,
M.
Hanrath
, and
M.
Dolg
,
J. Chem. Phys.
126
,
154110
(
2007
).
60.
E. E.
Dahlke
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
3
,
46
(
2007
).
61.
L.
Bytautas
and
K.
Ruedenberg
,
J. Phys. Chem. A
114
,
8601
(
2010
).
62.
M. S.
Gordon
,
D. G.
Fedorov
,
S. R.
Pruitt
, and
L. V.
Slipchenko
,
Chem. Rev.
112
,
632
(
2012
).
63.
C.
Müller
and
B.
Paulus
,
Phys. Chem. Chem.
14
,
7605
(
2012
).
64.
R. M.
Richard
and
J. M.
Herbert
,
J. Chem. Phys.
137
,
064113
(
2012
).
65.
J.
Friedrich
and
J.
Hänchen
,
J. Chem. Theory Comput.
9
,
5381
(
2013
).
66.
J.
Friedrich
and
K.
Walczak
,
J. Chem. Theory Comput.
9
,
408
(
2013
).
67.
J.
Zhang
and
M.
Dolg
,
J. Chem. Theory Comput.
9
,
2992
(
2013
).
68.
E.
Voloshina
and
B.
Paulus
,
J. Chem. Theory Comput.
10
,
1698
(
2014
).
69.
T.
Anacker
,
D. P.
Tew
, and
J.
Friedrich
,
J. Chem. Theory Comput.
12
,
65
(
2016
).
70.
K. U.
Lao
,
K.-Y.
Liu
,
R. M.
Richard
, and
J. M.
Herbert
,
J. Chem. Phys.
144
,
164105
(
2016
).
71.
B.
Fiedler
,
G.
Schmitz
,
C.
Hättig
, and
J.
Friedrich
,
J. Chem. Theory Comput.
13
,
6023
(
2017
).
72.
J. J.
Eriksen
,
F.
Lipparini
, and
J.
Gauss
,
J. Phys. Chem. Lett.
8
,
4633
(
2017
).
73.
J. S.
Boschen
,
D.
Theis
,
K.
Ruedenberg
, and
T. L.
Windus
,
J. Phys. Chem. A
121
,
836
(
2017
).
74.
J. J.
Eriksen
and
J.
Gauss
,
J. Chem. Theory Comput.
14
,
5180
(
2018
).
75.
E.
Fertitta
,
D.
Koch
,
B.
Paulus
,
G.
Barcza
, and
Ö.
Legeza
,
Mol. Phys.
116
,
1471
(
2018
).
76.
P. M.
Zimmerman
and
A. E.
Rask
,
J. Chem. Phys.
150
,
244117
(
2019
).
77.
J. J.
Eriksen
and
J.
Gauss
,
J. Chem. Theory Comput.
15
,
4873
(
2019
).
78.
J. J.
Eriksen
and
J.
Gauss
,
J. Phys. Chem. Lett.
10
,
7910
(
2019
).
79.
M.
Reiher
,
N.
Wiebe
,
K. M.
Svore
,
D.
Wecker
, and
M.
Troyer
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
7555
(
2017
).
80.
F.
Neese
,
F.
Wennmohs
, and
A.
Hansen
,
J. Chem. Phys.
130
,
114108
(
2009
).
81.
F.
Neese
,
A.
Hansen
, and
D. G.
Liakos
,
J. Chem. Phys.
131
,
064103
(
2009
).
82.
C.
Riplinger
and
F.
Neese
,
J. Chem. Phys.
138
,
034106
(
2013
).
83.
C.
Riplinger
,
B.
Sandhoefer
,
A.
Hansen
, and
F.
Neese
,
J. Chem. Phys.
139
,
134101
(
2013
).
84.
C.
Riplinger
,
P.
Pinski
,
U.
Becker
,
E. F.
Valeev
, and
F.
Neese
,
J. Chem. Phys.
144
,
024109
(
2016
).
85.
G.
Schmitz
and
C.
Hättig
,
J. Chem. Phys.
145
,
234107
(
2016
).
86.
M.
Schwilk
,
Q.
Ma
,
C.
Köppl
, and
H.-J.
Werner
,
J. Chem. Theory Comput.
13
,
3650
(
2017
).
87.
A.
Landau
,
K.
Khistyaev
,
S.
Dolgikh
, and
A. I.
Krylov
,
J. Chem. Phys.
132
,
014109
(
2010
).
88.
P.
Pokhilko
,
D.
Izmodenov
, and
A. I.
Krylov
,
J. Chem. Phys.
152
,
034105
(
2020
).
89.
D.
Mester
,
P. R.
Nagy
, and
M.
Kállay
,
J. Chem. Phys.
146
,
194102
(
2017
).
90.
S. D.
Folkestad
and
H.
Koch
,
J. Chem. Theory Comput.
16
,
179
(
2020
).
91.
A.
Kumar
and
T. D.
Crawford
,
J. Phys. Chem. A
121
,
708
(
2017
).
92.
L.
Gyevi-Nagy
,
M.
Kállay
, and
P. R.
Nagy
,
J. Chem. Theory Comput.
17
,
860
(
2021
).
93.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
94.
D. J.
Arriola
,
M.
Bokota
,
R. E.
Campbell
,
J.
Klosin
,
R. E.
LaPointe
,
O. D.
Redwine
,
R. B.
Shankar
,
F. J.
Timmers
, and
K. A.
Abboud
,
J. Am. Chem. Soc.
129
,
7065
(
2007
).
95.
H. A.
Bethe
and
J.
Goldstone
,
Proc. R. Soc. A
238
,
551
(
1957
).
96.
D. S.
Abrams
and
S.
Lloyd
,
Phys. Rev. Lett.
79
,
258x6
(
1997
).
97.
P.-O.
Löwdin
,
Phys. Rev.
97
,
1474
(
1955
).
98.
P.
Jordan
and
E.
Wigner
,
Z. Phys.
47
,
631
(
1928
).
99.
S. B.
Bravyi
and
A. Y.
Kitaev
,
Ann. Phys.
298
,
210
(
2002
).
100.
K.
Setia
and
J. D.
Whitfield
,
J. Chem. Phys.
148
,
164104
(
2018
).
101.
W.
Kutzelnigg
and
S.
Koch
,
J. Chem. Phys.
79
,
4315
(
1983
).
102.
R. J.
Bartlett
and
J.
Noga
,
Chem. Phys. Lett.
150
,
29
(
1988
).
103.
R. J.
Bartlett
,
S. A.
Kucharski
, and
J.
Noga
,
Chem. Phys. Lett.
155
,
133
(
1989
).
104.
J. D.
Watts
,
G. W.
Trucks
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
157
,
359
(
1989
).
105.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
106.
R. J.
Bartlett
and
M.
Musiał
,
Rev. Mod. Phys.
79
,
291
(
2007
).
107.
See https://cccbdb.nist.gov for NIST CCCDB: National Institute of Standards and Technology Computational Chemistry Comparison and Benchmark DataBase.
108.
J. R.
McClean
,
N. C.
Rubin
,
K. J.
Sung
,
I. D.
Kivlichan
,
X.
Bonet-Monroig
,
Y.
Cao
,
C.
Dai
,
E. S.
Fried
,
C.
Gidney
,
B.
Gimby
,
P.
Gokhale
,
T.
Häner
,
T.
Hardikar
,
V.
Havlíček
,
O.
Higgott
,
C.
Huang
,
J.
Izaac
,
Z.
Jiang
,
X.
Liu
,
S.
McArdle
,
M.
Neeley
,
T.
O’Brien
,
B.
O’Gorman
,
I.
Ozfidan
,
M. D.
Radin
,
J.
Romero
,
N. P. D.
Sawaya
,
B.
Senjean
K.
Setia
,
S.
Sim
,
D. S.
Steiger
,
M.
Steudtner
,
Q.
Sun
,
W.
Sun
,
D.
Wang
,
F.
Zhang
, and
R.
Babbush
,
Quantum Sci. Technol.
5
,
034014
(
2020
).
109.
D. S.
Steiger
,
T.
Häner
, and
M.
Troyer
,
Quantum
2
,
49
(
2018
).
110.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K.-L.
Chan
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
).
111.
See https://1qbit.com/qemist/ for QEMIST: Quantum-Enabled Molecular Ab Initio Simulation Toolkit.
112.
M. J. D.
Powell
, “
A direct search optimization method that models the objective and constraint functions by linear interpolation
,” in
Advances in Optimization and Numerical Analysis
, edited by
S.
Gomez
and
J.-P.
Hennart
(
Springer Netherlands
,
Dordrecht
,
1994
), pp.
51
67
.
113.
R. A.
Lang
,
I. G.
Ryabinkin
, and
A. F.
Izmaylov
,
J. Chem. Theory Comput.
17
,
66
(
2021
).
114.
J. M.
Foster
and
S. F.
Boys
,
Rev. Mod. Phys.
32
,
300
(
1960
).
You do not currently have access to this content.