Expanding the set of stable, accurate, and scalable methods for simulating molecular quantum dynamics is important for accelerating the computational exploration of molecular processes. In this paper, we adapt the signed particles Monte Carlo algorithm for solving the transient Wigner equation to scenarios of chemical interest. This approach was used in the past to study electronic processes in semi-conductors, but to the best of our knowledge, it had never been applied to molecular modeling. We present the algorithm and demonstrate its excellent performance on harmonic and double well potentials for electronic and nuclear systems. We explore the stability of the algorithm, discuss the choice of hyper-parameters, and cautiously speculate that it may be used in quantum molecular dynamics simulations.

1.
E.
Wigner
, “
On the quantum correction for thermodynamic equilibrium
,”
Phys. Rev.
40
,
749
759
(
1932
).
2.
J.
Weinbub
and
D. K.
Ferry
, “
Recent advances in Wigner function approaches
,”
Appl. Phys. Rev.
5
,
041104
(
2018
).
3.
R. P.
Rundle
and
M. J.
Everitt
, “
Overview of the phase space formulation of quantum mechanics with application to quantum technologies
,”
Adv. Quantum Technol.
4
,
2100016
(
2021
).
4.
P.
Dollfus
,
D.
Querlioz
, and
J.
Saint Martin
, “
The Monte Carlo method for Wigner and Boltzmann transport equations
,” in
Simulation of Transport in Nanodevices
(
John Wiley & Sons, Ltd.
,
2016
), Chap. 8, pp.
319
369
, https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118761793.ch8.
5.
D. K.
Ferry
and
M.
Nedjalkov
,
The Wigner Function in Science and Technology
(
IOP Publishing
,
2018
), pp.
2053
2563
.
6.
G.
Ciccotti
,
C.
Pierleoni
,
F.
Capuani
, and
V. S.
Filinov
, “
Wigner approach to the semiclassical dynamics of a quantum many-body system: The dynamic scattering function of 4He
,”
Comput. Phys. Commun.
121–122
,
452
459
(
1999
), part of the Special Issue: Proceedings of the Europhysics Conference on Computational Physics CCP 1998.
7.
R.
Kapral
, “
Progress in the theory of mixed quantum-classical dynamics
,”
Annu. Rev. Phys. Chem.
57
,
129
157
(
2006
).
8.
J. E.
Subotnik
,
A.
Jain
,
B.
Landry
,
A.
Petit
,
W.
Ouyang
, and
N.
Bellonzi
, “
Understanding the surface hopping view of electronic transitions and decoherence
,”
Annu. Rev. Phys. Chem.
67
,
387
417
(
2016
).
9.
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
,
Classical and Quantum Dynamics in Condensed Phase Simulations
(
World Scientific
,
1998
), https://www.worldscientific.com/doi/pdf/10.1142/3816.
10.
P.
Huo
and
D. F.
Coker
, “
Communication: Partial linearized density matrix dynamics for dissipative, non-adiabatic quantum evolution
,”
J. Chem. Phys.
135
,
201101
(
2011
).
11.
J. P.
Zobel
,
J. J.
Nogueira
, and
L.
González
, “
Finite-temperature Wigner phase-space sampling and temperature effects on the excited-state dynamics of 2-nitronaphthalene
,”
Phys. Chem. Chem. Phys.
21
,
13906
13915
(
2019
).
12.
L.
Du
and
Z.
Lan
, “
An on-the-fly surface-hopping program jade for nonadiabatic molecular dynamics of polyatomic systems: Implementation and applications
,”
J. Chem. Theory Comput.
11
,
1360
1374
(
2015
).
13.
J. M.
Sellier
,
M.
Nedjalkov
, and
I.
Dimov
, “
An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism
,”
Phys. Rep.
577
,
1
34
(
2015
), part of the Special Issue: An Introduction to Applied Quantum Mechanics in the Wigner Monte Carlo Formalism.
14.
M.
Nedjalkov
,
H.
Kosina
,
S.
Selberherr
,
C.
Ringhofer
, and
D. K.
Ferry
, “
Unified particle approach to Wigner–Boltzmann transport in small semiconductor devices
,”
Phys. Rev. B
70
,
115319
(
2004
).
15.
O.
Muscato
, “
A benchmark study of the signed-particle Monte Carlo algorithm for the Wigner equation
,”
Commun. Appl. Ind. Math.
8
,
237
(
2017
).
16.
S.
Shao
and
Y.
Xiong
, “
A branching random walk method for many-body Wigner quantum dynamics
,”
Numer. Math.: Theory, Methods Appl.
12
,
21
71
(
2018
).
17.
Y.
Xiong
and
S.
Shao
, “
The Wigner branching random walk: Efficient implementation and performance evaluation
,”
Commun. Comput. Phys.
25
,
871
910
(
2018
).
18.
K.
Huang
,
Statistical Mechanics
(
John Wiley & Sons,
1987
); available at https://www.bibsonomy.org/bibtex/2c1351deedab5631d6a1dca678ccc9ad9/dhruvbansal.
19.
M.
Nedjalkov
,
P.
Schwaha
,
S.
Selberherr
,
J. M.
Sellier
, and
D.
Vasileska
, “
Wigner quasi-particle attributes—An asymptotic perspective
,”
Appl. Phys. Lett.
102
,
163113
(
2013
).
20.
D.
Querlioz
,
P.
Dollfus
,
V.-N.
Do
,
A.
Bournel
, and
V. L.
Nguyen
, “
An improved Wigner Monte-Carlo technique for the self-consistent simulation of RTDs
,”
J. Comput. Electron.
5
,
443
446
(
2006
).
21.
J. M.
Sellier
,
M.
Nedjalkov
,
I.
Dimov
, and
S.
Selberherr
, “
A benchmark study of the Wigner Monte Carlo method
,”
Monte Carlo Methods Appl.
20
,
43
51
(
2014
).
22.
J.
Sellier
,
M.
Nedjalkov
, and
I.
Dimov
, “
An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism
,”
Phys. Rep.
577
,
1
(
2015
).
23.
R. L.
Burden
and
J. D.
Faires
,
Numerical Analysis
, 9th ed. (
Brooks/Cole
,
Boston
,
2011
).
24.
J.
Auer
,
E.
Krotscheck
, and
S. A.
Chin
, “
A fourth-order real-space algorithm for solving local Schrödinger equations
,”
J. Chem. Phys.
115
,
6841
6846
(
2001
).
You do not currently have access to this content.