Linear-response time-dependent density functional theory (LR-TDDFT) for core level spectroscopy using standard local functionals suffers from self-interaction error and a lack of orbital relaxation upon creation of the core hole. As a result, LR-TDDFT calculated x-ray absorption near edge structure spectra needed to be shifted along the energy axis to match experimental data. We propose a correction scheme based on many-body perturbation theory to calculate the shift from first-principles. The ionization potential of the core donor state is first computed and then substituted for the corresponding Kohn–Sham orbital energy, thus emulating Koopmans’s condition. Both self-interaction error and orbital relaxation are taken into account. The method exploits the localized nature of core states for efficiency and integrates seamlessly in our previous implementation of core level LR-TDDFT, yielding corrected spectra in a single calculation. We benchmark the correction scheme on molecules at the K- and L-edges as well as for core binding energies and report accuracies comparable to higher order methods. We also demonstrate applicability in large and extended systems and discuss efficient approximations.

1.
M. E.
Casida
, “
Time-dependent density functional response theory for molecules
,” in
Recent Advances in Density Functional Methods, Part I
(
World Scientific
,
1995
), pp.
155
192
.
2.
K.
Yabana
and
G. F.
Bertsch
, “
Time-dependent local-density approximation in real time
,”
Phys. Rev. B
54
,
4484
(
1996
).
3.
L. S.
Cederbaum
,
W.
Domcke
, and
J.
Schirmer
, “
Many-body theory of core holes
,”
Phys. Rev. A
22
,
206
(
1980
).
4.
K.
Lopata
,
B. E.
van Kuiken
,
M.
Khalil
, and
N.
Govind
, “
Linear-response and real-time time-dependent density functional theory studies of core-level near-edge X-ray absorption
,”
J. Chem. Theory Comput.
8
,
3284
3292
(
2012
).
5.
M.
Stener
,
G.
Fronzoni
, and
M.
de Simone
, “
Time dependent density functional theory of core electrons excitations
,”
Chem. Phys. Lett.
373
,
115
123
(
2003
).
6.
N. A.
Besley
and
A.
Noble
, “
Time-dependent density functional theory study of the X-ray absorption spectroscopy of acetylene, ethylene, and benzene on Si(100)
,”
J. Phys. Chem. C
111
,
3333
3340
(
2007
).
7.
S.
DeBeer George
,
T.
Petrenko
, and
F.
Neese
, “
Time-dependent density functional calculations of ligand K-edge X-ray absorption spectra
,”
Inorg. Chim. Acta
361
,
965
972
(
2008
).
8.
W.
Liang
,
S. A.
Fischer
,
M. J.
Frisch
, and
X.
Li
, “
Energy-specific linear response TDHF/TDDFT for calculating high-energy excited states
,”
J. Chem. Theory Comput.
7
,
3540
3547
(
2011
).
9.
N.
Schmidt
,
R.
Fink
, and
W.
Hieringer
, “
Assignment of near-edge x-ray absorption fine structure spectra of metalloporphyrins by means of time-dependent density-functional calculations
,”
J. Chem. Phys.
133
,
054703
(
2010
).
10.
N. A.
Besley
, “
Modeling of the spectroscopy of core electrons with density functional theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2021
,
e1527
.
11.
Y.
Imamura
and
H.
Nakai
, “
Analysis of self-interaction correction for describing core excited states
,”
Int. J. Quantum Chem.
107
,
23
29
(
2007
).
12.
S. G.
Minasian
,
J. M.
Keith
,
E. R.
Batista
,
K. S.
Boland
,
D. L.
Clark
,
S. A.
Kozimor
,
R. L.
Martin
,
D. K.
Shuh
, and
T.
Tyliszczak
, “
New evidence for 5f covalency in actinocenes determined from carbon K-edge XAS and electronic structure theory
,”
Chem. Sci.
5
,
351
359
(
2014
).
13.
A.
Nardelli
,
G.
Fronzoni
, and
M.
Stener
, “
Theoretical study of sulfur L-edge XANES of thiol protected gold nanoparticles
,”
Phys. Chem. Chem. Phys.
13
,
480
487
(
2011
).
14.
C.
Li
,
P.
Salén
,
V.
Yatsyna
,
L.
Schio
,
R.
Feifel
,
R.
Squibb
,
M.
Kamińska
,
M.
Larsson
,
R.
Richter
,
M.
Alagia
 et al., “
Experimental and theoretical XPS and NEXAFS studies of N-methylacetamide and N-methyltrifluoroacetamide
,”
Phys. Chem. Chem. Phys.
18
,
2210
2218
(
2016
).
15.
S.
DeBeer George
and
F.
Neese
, “
Calibration of scalar relativistic density functional theory for the calculation of sulfur K-edge X-ray absorption spectra
,”
Inorg. Chem.
49
,
1849
1853
(
2010
).
16.
V.
Martin-Diaconescu
,
M.
Gennari
,
B.
Gerey
,
E.
Tsui
,
J.
Kanady
,
R.
Tran
,
J.
Pécaut
,
D.
Maganas
,
V.
Krewald
,
E.
Gouré
 et al., “
Ca K-edge XAS as a probe of calcium centers in complex systems
,”
Inorg. Chem.
54
,
1283
1292
(
2015
).
17.
P.
Norman
and
A.
Dreuw
, “
Simulating X-ray spectroscopies and calculating core-excited states of molecules
,”
Chem. Rev.
118
,
7208
7248
(
2018
).
18.
G.
Tu
,
Z.
Rinkevicius
,
O.
Vahtras
,
H.
Ågren
,
U.
Ekström
,
P.
Norman
, and
V.
Carravetta
, “
Self-interaction-corrected time-dependent density-functional-theory calculations of x-ray-absorption spectra
,”
Phys. Rev. A
76
,
022506
(
2007
).
19.
A.
Nakata
,
Y.
Imamura
, and
H.
Nakai
, “
Hybrid exchange-correlation functional for core, valence, and Rydberg excitations: Core-valence-Rydberg B3LYP
,”
J. Chem. Phys.
125
,
064109
(
2006
).
20.
J.-W.
Song
,
M. A.
Watson
,
A.
Nakata
, and
K.
Hirao
, “
Core-excitation energy calculations with a long-range corrected hybrid exchange-correlation functional including a short-range Gaussian attenuation (LCgau-BOP)
,”
J. Chem. Phys.
129
,
184113
(
2008
).
21.
N. A.
Besley
,
M. J. G.
Peach
, and
D. J.
Tozer
, “
Time-dependent density functional theory calculations of near-edge X-ray absorption fine structure with short-range corrected functionals
,”
Phys. Chem. Chem. Phys.
11
,
10350
10358
(
2009
).
22.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
, “
Relativistic regular two-component Hamiltonians
,”
J. Chem. Phys.
99
,
4597
4610
(
1993
).
23.
B. A.
Hess
, “
Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators
,”
Phys. Rev. A
33
,
3742
(
1986
).
24.
A.
Bussy
and
J.
Hutter
, “
Efficient and low-scaling linear-response time-dependent density functional theory implementation for core-level spectroscopy of large and periodic systems
,”
Phys. Chem. Chem. Phys.
23
,
4736
4746
(
2021
).
25.
T. D.
Kühne
,
M.
Iannuzzi
,
M.
Del Ben
,
V. V.
Rybkin
,
P.
Seewald
,
F.
Stein
,
T.
Laino
,
R. Z.
Khaliullin
,
O.
Schütt
,
F.
Schiffmann
 et al., “
CP2K: An electronic structure and molecular dynamics software package—Quickstep: Efficient and accurate electronic structure calculations
,”
J. Chem. Phys.
152
,
194103
(
2020
).
26.
R.
Sternheimer
, “
On nuclear quadrupole moments
,”
Phys. Rev.
84
,
244
(
1951
).
27.
J.
Hutter
, “
Excited state nuclear forces from the Tamm–Dancoff approximation to time-dependent density functional theory within the plane wave basis set framework
,”
J. Chem. Phys.
118
,
3928
3934
(
2003
).
28.
E.
Gross
and
W.
Kohn
, “
Time-dependent density-functional theory
,”
Adv. Quantum Chem.
21
,
255
(
1990
).
29.
S.
Hirata
and
M.
Head-Gordon
, “
Time-dependent density functional theory within the Tamm–Dancoff approximation
,”
Chem. Phys. Lett.
314
,
291
299
(
1999
).
30.
A. L.
Fetter
and
J. D.
Walecka
,
Quantum Theory of Many-Particle Systems
(
Courier Corporation
,
2012
).
31.
N. A.
Besley
, “
Fast time-dependent density functional theory calculations of the X-ray absorption spectroscopy of large systems
,”
J. Chem. Theory Comput.
12
,
5018
5025
(
2016
).
32.
J. J.
Rehr
,
E. A.
Stern
,
R. L.
Martin
, and
E. R.
Davidson
, “
Extended x-ray-absorption fine-structure amplitudes—Wave-function relaxation and chemical effects
,”
Phys. Rev. B
17
,
560
(
1978
).
33.
N. A.
Besley
,
A. T. B.
Gilbert
, and
P. M. W.
Gill
, “
Self-consistent-field calculations of core excited states
,”
J. Chem. Phys.
130
,
124308
(
2009
).
34.
D.
Hait
and
M.
Head-Gordon
, “
Highly accurate prediction of core spectra of molecules at density functional theory cost: Attaining sub-electronvolt error from a restricted open-shell Kohn–Sham approach
,”
J. Phys. Chem. Lett.
11
,
775
786
(
2020
).
35.
F. A.
Asmuruf
and
N. A.
Besley
, “
Calculation of near-edge X-ray absorption fine structure with the CIS(D) method
,”
Chem. Phys. Lett.
463
,
267
271
(
2008
).
36.
M. L.
Vidal
,
X.
Feng
,
E.
Epifanovsky
,
A. I.
Krylov
, and
S.
Coriani
, “
New and efficient equation-of-motion coupled-cluster framework for core-excited and core-ionized states
,”
J. Chem. Theory Comput.
15
,
3117
3133
(
2019
).
37.
J.
Schirmer
,
A. B.
Trofimov
,
K. J.
Randall
,
J.
Feldhaus
,
A. M.
Bradshaw
,
Y.
Ma
,
C. T.
Chen
, and
F.
Sette
, “
K-shell excitation of the water, ammonia, and methane molecules using high-resolution photoabsorption spectroscopy
,”
Phys. Rev. A
47
,
1136
(
1993
).
38.
A. P.
Hitchcock
and
C. E.
Brion
, “
Carbon K-shell excitation of C2H2, C2H4, C2H6 and C6H6 by 2.5 keV electron impact
,”
J. Electron Spectrosc. Relat. Phenom.
10
,
317
330
(
1977
).
39.
M.
Domke
,
C.
Xue
,
A.
Puschmann
,
T.
Mandel
,
E.
Hudson
,
D. A.
Shirley
, and
G.
Kaindl
, “
Carbon and oxygen K-edge photoionization of the CO molecule
,”
Chem. Phys. Lett.
173
,
122
128
(
1990
).
40.
G.
Remmers
,
M.
Domke
,
A.
Puschmann
,
T.
Mandel
,
C.
Xue
,
G.
Kaindl
,
E.
Hudson
, and
D. A.
Shirley
, “
High-resolution K-shell photoabsorption in formaldehyde
,”
Phys. Rev. A
46
,
3935
(
1992
).
41.
K. C.
Prince
,
L.
Avaldi
,
M.
Coreno
,
R.
Camilloni
, and
M.
de Simone
, “
Vibrational structure of core to Rydberg state excitations of carbon dioxide and dinitrogen oxide
,”
J. Phys. B: At., Mol. Opt. Phys.
32
,
2551
(
1999
).
42.
A. P.
Hitchcock
and
C. E.
Brion
, “
K-shell excitation of HF and F2 studied by electron energy-loss spectroscopy
,”
J. Phys. B: At. Mol. Phys.
14
,
4399
(
1981
).
43.
C. A.
Ullrich
,
Time-Dependent Density-Functional Theory: Concepts and Applications
(
OUP Oxford
,
2011
).
44.
I.
Dabo
,
A.
Ferretti
,
N.
Poilvert
,
Y.
Li
,
N.
Marzari
, and
M.
Cococcioni
, “
Koopmans’ condition for density-functional theory
,”
Phys. Rev. B
82
,
115121
(
2010
).
45.
P.
Verma
and
R. J.
Bartlett
, “
Increasing the applicability of density functional theory. V. X-ray absorption spectra with ionization potential corrected exchange and correlation potentials
,”
J. Chem. Phys.
145
,
034108
(
2016
).
46.
L. S.
Cederbaum
, “
Direct calculation of ionization potentials of closed-shell atoms and molecules
,”
Theor. Chim. Acta
31
,
239
260
(
1973
).
47.
J. V.
Ortiz
, “
Electron propagator theory: An approach to prediction and interpretation in quantum chemistry
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
,
123
142
(
2013
).
48.
Y.
Shigeta
,
A. M.
Ferreira
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
, “
Electron propagator calculations with Kohn–Sham reference states
,”
Int. J. Quantum Chem.
85
,
411
420
(
2001
).
49.
B. T.
Pickup
and
O.
Goscinski
, “
Direct calculation of ionization energies: I. Closed shells
,”
Mol. Phys.
26
,
1013
1035
(
1973
).
50.
M. L.
Vidal
,
P.
Pokhilko
,
A. I.
Krylov
, and
S.
Coriani
, “
Equation-of-motion coupled-cluster theory to model L-edge X-ray absorption and photoelectron spectra
,”
J. Phys. Chem. Lett.
11
,
8314
8321
(
2020
).
51.
W.
Hayes
and
F. C.
Brown
, “
Absorption by some molecular gases in the extreme ultraviolet
,”
Phys. Rev. A
6
,
21
(
1972
).
52.
J. D.
Bozek
,
K. H.
Tan
,
G. M.
Bancroft
, and
J. S.
Tse
, “
High resolution gas phase photoabsorption spectra of SiCl4 and Si(CH3)4 at the silicon l-edges: Characterization and assignment of resonances
,”
Chem. Phys. Lett.
138
,
33
42
(
1987
).
53.
Z. F.
Liu
,
J. N.
Cutler
,
G. M.
Bancroft
,
K. H.
Tan
,
R. G.
Cavell
, and
J. S.
Tse
, “
High resolution gas phase photoabsorption spectra and multiple-scattering Xα study of PX3(X = H, CH3, CF3) compounds at the P L2,3 edge
,”
Chem. Phys. Lett.
172
,
421
429
(
1990
).
54.
J. J.
Neville
,
A.
Jürgensen
,
R. G.
Cavell
,
N.
Kosugi
, and
A. P.
Hitchcock
, “
Inner-shell excitation of PF3, PCl3, PCl2CF3, OPF3 and SPF3: Part I. Spectroscopy
,”
Chem. Phys.
238
,
201
220
(
1998
).
55.
R.
Guillemin
,
W. C.
Stolte
,
L. T. N.
Dang
,
S.-W.
Yu
, and
D. W.
Lindle
, “
Fragmentation dynamics of H2S following S 2p photoexcitation
,”
J. Chem. Phys.
122
,
094318
(
2005
).
56.
U.
Ankerhold
,
B.
Esser
, and
F.
Von Busch
, “
Ionization and fragmentation of OCS and CS2 after photoexcitation around the sulfur 2p edge
,”
Chem. Phys.
220
,
393
407
(
1997
).
57.
A.
Krasnoperova
,
E.
Gluskin
,
L.
Mazalov
, and
V.
Kochubei
, “
The fine structure of the lII,III absorption edge of sulfur in the SO2 molecule
,”
J. Struct. Chem.
17
,
947
950
(
1976
).
58.
H.
Aksela
,
S.
Aksela
,
M.
Ala-Korpela
,
O.-P.
Sairanen
,
M.
Hotokka
,
G. M.
Bancroft
,
K. H.
Tan
, and
J.
Tulkki
, “
Decay channels of core-excited HCl
,”
Phys. Rev. A
41
,
6000
(
1990
).
59.
O.
Nayandin
,
E.
Kukk
,
A.
Wills
,
B.
Langer
,
J.
Bozek
,
S.
Canton-Rogan
,
M.
Wiedenhoeft
,
D.
Cubaynes
, and
N.
Berrah
, “
Angle-resolved two-dimensional mapping of electron emission from the inner-shell 2p excitations in Cl2
,”
Phys. Rev. A
63
,
062719
(
2001
).
60.
U.
Borštnik
,
J.
VandeVondele
,
V.
Weber
, and
J.
Hutter
, “
Sparse matrix multiplication: The distributed block-compressed sparse row library
,”
Parallel Comput.
40
,
47
58
(
2014
).
61.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
62.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
11627
(
1994
).
63.
M. A.
Ambroise
and
F.
Jensen
, “
Probing basis set requirements for calculating core ionization and core excitation spectroscopy by the Δ self-consistent-field approach
,”
J. Chem. Theory Comput.
15
,
325
337
(
2018
).
64.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
1999
).
65.
V.
Atalla
,
M.
Yoon
,
F.
Caruso
,
P.
Rinke
, and
M.
Scheffler
, “
Hybrid density functional theory meets quasiparticle calculations: A consistent electronic structure approach
,”
Phys. Rev. B
88
,
165122
(
2013
).
66.
A. D.
Becke
, “
A new mixing of Hartree–Fock and local density-functional theories
,”
J. Chem. Phys.
98
,
1372
1377
(
1993
).
67.
D.
Golze
,
L.
Keller
, and
P.
Rinke
, “
Accurate absolute and relative core-level binding energies from GW
,”
J. Phys. Chem. Lett.
11
,
1840
1847
(
2020
).
68.
R.
Flores-Moreno
,
V. G.
Zakrzewski
, and
J. V.
Ortiz
, “
Assessment of transition operator reference states in electron propagator calculations
,”
J. Chem. Phys.
127
,
134106
(
2007
).
69.
V.
Myrseth
,
J. D.
Bozek
,
E.
Kukk
,
L. J.
Sæthre
, and
T. D.
Thomas
, “
Adiabatic and vertical carbon 1s ionization energies in representative small molecules
,”
J. Electron Spectrosc. Relat. Phenom.
122
,
57
63
(
2002
).
70.
A. A.
Bakke
,
H.-W.
Chen
, and
W. L.
Jolly
, “
A table of absolute core-electron binding-energies for gaseous atoms and molecules
,”
J. Electron Spectrosc. Relat. Phenom.
20
,
333
366
(
1980
).
71.
W. L.
Jolly
,
K. D.
Bomben
, and
C. J.
Eyermann
, “
Core-electron binding energies for gaseous atoms and molecules
,”
At. Data Nucl. Data Tables
31
,
433
493
(
1984
).
72.
K.
Siegbahn
,
ECSA Applied to Free Molecules
(
North-Holland Publishing
,
1969
).
73.
D.
Hait
and
M.
Head-Gordon
, “
Excited state orbital optimization via minimizing the square of the gradient: General approach and application to singly and doubly excited states via density functional theory
,”
J. Chem. Theory Comput.
16
,
1699
1710
(
2020
).
74.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
, “
Strongly constrained and appropriately normed semilocal density functional
,”
Phys. Rev. Lett.
115
,
036402
(
2015
).
75.
T.
Koopmans
, “
Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms
,”
Physica
1
,
104
113
(
1934
).
76.
M.
Guidon
,
J.
Hutter
, and
J.
VandeVondele
, “
Auxiliary density matrix methods for Hartree–Fock exchange calculations
,”
J. Chem. Theory Comput.
6
,
2348
2364
(
2010
).
77.
F.
Jensen
, “
Unifying general and segmented contracted basis sets. Segmented polarization consistent basis sets
,”
J. Chem. Theory Comput.
10
,
1074
1085
(
2014
).
78.
C.
Kumar
,
H.
Fliegl
,
F.
Jensen
,
A. M.
Teale
,
S.
Reine
, and
T.
Kjaergaard
, “
Accelerating Kohn-Sham response theory using density fitting and the auxiliary-density-matrix method
,”
Int. J. Quantum Chem.
118
,
e25639
(
2018
).
79.
P.
Parent
,
F.
Bournel
,
J.
Lasne
,
S.
Lacombe
,
G.
Strazzulla
,
S.
Gardonio
,
S.
Lizzit
,
J.-P.
Kappler
,
L.
Joly
,
C.
Laffon
 et al., “
The irradiation of ammonia ice studied by near edge x-ray absorption spectroscopy
,”
J. Chem. Phys.
131
,
154308
(
2009
).
80.
P.
Wernet
,
D.
Nordlund
,
U.
Bergmann
,
M.
Cavalleri
,
M.
Odelius
,
H.
Ogasawara
,
L.-Å.
Näslund
,
T.
Hirsch
,
L.
Ojamäe
,
P.
Glatzel
 et al., “
The structure of the first coordination shell in liquid water
,”
Science
304
,
995
999
(
2004
).
81.
R.
Haensel
,
G.
Keitel
,
N.
Kosuch
,
U.
Nielsen
, and
P.
Schreiber
, “
Optical absorption of solid neon and argon in the soft x-ray region
,”
J. Phys. Colloq.
32
,
C4-236
(
1971
).
82.
C.
Møller
and
M. S.
Plesset
, “
Note on an approximation treatment for many-electron systems
,”
Phys. Rev.
46
,
618
(
1934
).
83.
T.
Gruber
,
K.
Liao
,
T.
Tsatsoulis
,
F.
Hummel
, and
A.
Grüneis
, “
Applying the coupled-cluster ansatz to solids and surfaces in the thermodynamic limit
,”
Phys. Rev. X
8
,
021043
(
2018
).
84.
J.
VandeVondele
and
J.
Hutter
, “
Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
,”
J. Chem. Phys.
127
,
114105
(
2007
).
85.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
86.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
87.
M.
Guidon
,
J.
Hutter
, and
J.
VandeVondele
, “
Robust periodic Hartree–Fock exchange for large-scale simulations using Gaussian basis sets
,”
J. Chem. Theory Comput.
5
,
3010
3021
(
2009
).
88.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
, “
Separable dual-space Gaussian pseudopotentials
,”
Phys. Rev. B
54
,
1703
(
1996
).
89.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
, “
Relativistic separable dual-space Gaussian pseudopotentials from H to Rn
,”
Phys. Rev. B
58
,
3641
(
1998
).
90.
M.
Krack
, “
Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals
,”
Theor. Chem. Acc.
114
,
145
152
(
2005
).
91.
L.
Triguero
,
L. G. M.
Pettersson
, and
H.
Ågren
, “
Calculations of near-edge x-ray-absorption spectra of gas-phase and chemisorbed molecules by means of density-functional and transition-potential theory
,”
Phys. Rev. B
58
,
8097
(
1998
).
92.
U.
Ekström
and
P.
Norman
, “
X-ray absorption spectra from the resonant-convergent first-order polarization propagator approach
,”
Phys. Rev. A
74
,
042722
(
2006
).
93.
U.
Ekström
,
P.
Norman
,
V.
Carravetta
, and
H.
Ågren
, “
Polarization propagator for x-ray spectra
,”
Phys. Rev. Lett.
97
,
143001
(
2006
).
94.
I.
Zhovtobriukh
,
P.
Norman
, and
L. G. M.
Pettersson
, “
X-ray absorption spectrum simulations of hexagonal ice
,”
J. Chem. Phys.
150
,
034501
(
2019
).
95.
M.
Matsumoto
,
T.
Yagasaki
, and
H.
Tanaka
, “
GenIce: Hydrogen-disordered ice generator
,”
J. Comput. Chem.
39
,
61
(
2018
).
96.
W.
Chen
and
A.
Pasquarello
, “
Band-edge positions in GW: Effects of starting point and self-consistency
,”
Phys. Rev. B
90
,
165133
(
2014
).
97.
T. A.
Pham
,
C.
Zhang
,
E.
Schwegler
, and
G.
Galli
, “
Probing the electronic structure of liquid water with many-body perturbation theory
,”
Phys. Rev. B
89
,
060202
(
2014
).
98.
Y.
Hinuma
,
A.
Grüneis
,
G.
Kresse
, and
F.
Oba
, “
Band alignment of semiconductors from density-functional theory and many-body perturbation theory
,”
Phys. Rev. B
90
,
155405
(
2014
).
99.
S.
Grimme
, “
Accurate calculation of the heats of formation for large main group compounds with spin-component scaled MP2 methods
,”
J. Phys. Chem. A
109
,
3067
3077
(
2005
).
100.
Y.
Jung
,
R. C.
Lochan
,
A. D.
Dutoi
, and
M.
Head-Gordon
, “
Scaled opposite-spin second order Møller–Plesset correlation energy: An economical electronic structure method
,”
J. Chem. Phys.
121
,
9793
9802
(
2004
).

Supplementary Material

You do not currently have access to this content.