A new approach is proposed to reduce the basis set incompleteness error of the triple excitation correction in explicitly correlated coupled-cluster singles and doubles with perturbative triples calculations. Our method is similar to the intuitive triples correction approach of Knizia et al. [J. Chem. Phys. 130, 054104 (2009)] but, in contrast to the latter, is size-consistent. The new approximation is easy to implement, and its overhead is negligible with respect to the conventional (T) correction. The performance of the approach is assessed for atomization, reaction, and interaction energies as well as for bond lengths and harmonic vibrational frequencies. The advantages of its size consistency are also demonstrated.
REFERENCES
1.
C.
Møller
and M. S.
Plesset
, Phys. Rev.
46
, 618
(1934
).2.
J.
Čížek
, J. Chem. Phys.
45
, 4256
(1966
).3.
G. D.
Purvis
III and R. J.
Bartlett
, J. Chem. Phys.
76
, 1910
(1982
).4.
A.
Tajti
, P. G.
Szalay
, A. G.
Császár
, M.
Kállay
, J.
Gauss
, E. F.
Valeev
, B. A.
Flowers
, J.
Vázquez
, and J. F.
Stanton
, J. Chem. Phys.
121
, 11599
(2004
).5.
A.
Karton
, E.
Rabinovich
, J. M. L.
Martin
, and B.
Ruscic
, J. Chem. Phys.
125
, 144108
(2006
).6.
K.
Raghavachari
, G. W.
Trucks
, J. A.
Pople
, and M.
Head-Gordon
, Chem. Phys. Lett.
157
, 479
(1989
).7.
J. D.
Watts
, J.
Gauss
, and R. J.
Bartlett
, J. Chem. Phys.
98
, 8718
(1993
).8.
M. J. O.
Deegan
and P. J.
Knowles
, Chem. Phys. Lett.
227
, 321
(1994
).9.
J. D.
Watts
, J.
Gauss
, and R. J.
Bartlett
, Chem. Phys. Lett.
200
, 1
(1992
).10.
J.
Gauss
and J. F.
Stanton
, Chem. Phys. Lett.
276
, 70
(1997
).11.
J.
Gauss
and J. F.
Stanton
, J. Chem. Phys.
104
, 2574
(1996
).12.
P. G.
Szalay
, J.
Gauss
, and J. F.
Stanton
, Theor. Chem. Acc.
100
, 5
(1998
).13.
J. F.
Stanton
, Chem. Phys. Lett.
281
, 130
(1997
).14.
Y. J.
Bomble
, J. F.
Stanton
, M.
Kállay
, and J.
Gauss
, J. Chem. Phys.
123
, 054101
(2005
).15.
M.
Kállay
and J.
Gauss
, J. Chem. Phys.
123
, 214105
(2005
).16.
T.
Janowski
and P.
Pulay
, J. Chem. Theory Comput.
4
, 1585
(2008
).17.
M.
Pitoňák
, F.
Aquilante
, P.
Hobza
, P.
Neogrády
, J.
Noga
, and M.
Urban
, Collect. Czech. Chem. Commun.
76
, 713
(2011
).18.
A. E.
DePrince
and C. D.
Sherrill
, J. Chem. Theory Comput.
9
, 2687
(2013
).19.
A.
Asadchev
and M. S.
Gordon
, J. Chem. Theory Comput.
9
, 3385
(2013
).20.
V. M.
Anisimov
, G. H.
Bauer
, K.
Chadalavada
, R. M.
Olson
, J. W.
Glenski
, W. T. C.
Kramer
, E.
Aprà
, and K.
Kowalski
, J. Chem. Theory Comput.
10
, 4307
(2014
).21.
C.
Peng
, J. A.
Calvin
, and E. F.
Valeev
, Int. J. Quantum Chem.
119
, e25894
(2019
).22.
L.
Gyevi-Nagy
, M.
Kállay
, and P. R.
Nagy
, J. Chem. Theory Comput.
16
, 366
(2020
).23.
Q.
Ma
and H.-J.
Werner
, Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
, e1371
(2018
).24.
Y.
Guo
, C.
Riplinger
, U.
Becker
, D. G.
Liakos
, Y.
Minenkov
, L.
Cavallo
, and F.
Neese
, J. Chem. Phys.
148
, 011101
(2018
).25.
G.
Schmitz
, C.
Hättig
, and D. P.
Tew
, Phys. Chem. Chem. Phys.
16
, 22167
(2014
).26.
P. R.
Nagy
, G.
Samu
, and M.
Kállay
, J. Chem. Theory Comput.
14
, 4193
(2018
).27.
T. H.
Dunning
, Jr., J. Chem. Phys.
90
, 1007
(1989
).28.
T.
Helgaker
, W.
Klopper
, H.
Koch
, and J.
Noga
, J. Chem. Phys.
106
, 9639
(1997
).29.
K. D.
Vogiatzis
, E. C.
Barnes
, and W.
Klopper
, Chem. Phys. Lett.
503
, 157
(2011
).30.
D. S.
Ranasinghe
and G. A.
Petersson
, J. Chem. Phys.
138
, 144104
(2013
).31.
W.
Kutzelnigg
and W.
Klopper
, J. Chem. Phys.
94
, 1985
(1991
).32.
W.
Klopper
, F. R.
Manby
, S.
Ten-no
, and E. F.
Valeev
, Int. Rev. Phys. Chem.
25
, 427
(2006
).33.
C.
Hättig
, W.
Klopper
, A.
Köhn
, and D. P.
Tew
, Chem. Rev.
112
, 4
(2012
).34.
W.
Kutzelnigg
, Theor. Chem. Acc.
68
, 445
(1985
).35.
W.
Klopper
and W.
Kutzelnigg
, Chem. Phys. Lett.
134
, 17
(1987
).36.
J.
Noga
, W.
Kutzelnigg
, and W.
Klopper
, Chem. Phys. Lett.
199
, 497
(1992
).37.
S.
Ten-no
, Chem. Phys. Lett.
398
, 56
(2004
).38.
S.
Ten-no
, J. Chem. Phys.
121
, 117
(2004
).39.
W.
Klopper
and C. C. M.
Samson
, J. Chem. Phys.
116
, 6397
(2002
).40.
E. F.
Valeev
, Chem. Phys. Lett.
395
, 190
(2004
).41.
F. R.
Manby
, J. Chem. Phys.
119
, 4607
(2003
).42.
S.
Kedžuch
, M.
Milko
, and J.
Noga
, Int. J. Quantum Chem.
105
, 929
(2005
).43.
H.-J.
Werner
, T. B.
Adler
, and F. R.
Manby
, J. Chem. Phys.
126
, 164102
(2007
).44.
G.
Knizia
and H.-J.
Werner
, J. Chem. Phys.
128
, 154103
(2008
).45.
R. A.
Bachorz
, F. A.
Bischoff
, A.
Glöß
, C.
Hättig
, S.
Höfener
, W.
Klopper
, and D. P.
Tew
, J. Comput. Chem.
32
, 2492
(2011
).46.
J.
Noga
, S.
Kedžuch
, J.
Šimunek
, and S.
Ten-no
, J. Chem. Phys.
128
, 174103
(2008
).47.
T.
Shiozaki
, M.
Kamiya
, S.
Hirata
, and E. F.
Valeev
, J. Chem. Phys.
129
, 071101
(2008
).48.
A.
Köhn
, G. W.
Richings
, and D. P.
Tew
, J. Chem. Phys.
129
, 201103
(2008
).49.
H.
Fliegl
, W.
Klopper
, and C.
Hättig
, J. Chem. Phys.
122
, 084107
(2005
).50.
D. P.
Tew
, W.
Klopper
, C.
Neiss
, and C.
Hättig
, Phys. Chem. Chem. Phys.
9
, 1921
(2007
).51.
T. B.
Adler
, G.
Knizia
, and H.-J.
Werner
, J. Chem. Phys.
127
, 221106
(2007
).52.
G.
Knizia
, T. B.
Adler
, and H.-J.
Werner
, J. Chem. Phys.
130
, 054104
(2009
).53.
M.
Torheyden
and E. F.
Valeev
, Phys. Chem. Chem. Phys.
10
, 3410
(2008
).54.
E. F.
Valeev
and T.
Crawford
, J. Chem. Phys.
128
, 244113
(2008
).55.
C.
Hättig
, D. P.
Tew
, and A.
Köhn
, J. Chem. Phys.
132
, 231102
(2010
).56.
M. K.
Kesharwani
, N.
Sylvetsky
, A.
Köhn
, D. P.
Tew
, and J. M. L.
Martin
, J. Chem. Phys.
149
, 154109
(2018
).57.
T.
Shiozaki
, M.
Kamiya
, S.
Hirata
, and E. F.
Valeev
, J. Chem. Phys.
130
, 054101
(2009
).58.
A.
Köhn
, J. Chem. Phys.
130
, 131101
(2009
).59.
A.
Köhn
, J. Chem. Phys.
130
, 104104
(2009
).60.
M.
Kállay
, P. R.
Nagy
, D.
Mester
, Z.
Rolik
, G.
Samu
, J.
Csontos
, J.
Csóka
, P. B.
Szabó
, L.
Gyevi-Nagy
, B.
Hégely
, I.
Ladjánszki
, L.
Szegedy
, B.
Ladóczki
, K.
Petrov
, M.
Farkas
, P. D.
Mezei
, Á.
Ganyecz
, and R. A.
Horváth
, MRCC, a quantum chemical program suite, see https://www.mrcc.hu/; accessed June 1, 2021.61.
M.
Kállay
, P. R.
Nagy
, D.
Mester
, Z.
Rolik
, G.
Samu
, J.
Csontos
, J.
Csóka
, P. B.
Szabó
, L.
Gyevi-Nagy
, B.
Hégely
, I.
Ladjánszki
, L.
Szegedy
, B.
Ladóczki
, K.
Petrov
, M.
Farkas
, P. D.
Mezei
, and Á.
Ganyecz
, J. Chem. Phys.
152
, 074107
(2020
).62.
L.
Gyevi-Nagy
, M.
Kállay
, and P. R.
Nagy
, J. Chem. Theory Comput.
17
, 860
(2021
).63.
K. A.
Peterson
, T. B.
Adler
, and H.-J.
Werner
, J. Chem. Phys.
128
, 084102
(2008
).64.
K. E.
Yousaf
and K. A.
Peterson
, J. Chem. Phys.
129
, 184108
(2008
).65.
K. E.
Yousaf
and K. A.
Peterson
, Chem. Phys. Lett.
476
, 303
–307
(2009
).66.
F.
Weigend
, J. Comput. Chem.
29
, 167
(2008
).67.
C.
Hättig
, Phys. Chem. Chem. Phys.
7
, 59
(2005
).68.
J. G.
Hill
and K. A.
Peterson
, J. Chem. Phys.
141
, 094106
(2014
).69.
K. A.
Peterson
, B. C.
Shepler
, D.
Figgen
, and H.
Stoll
, J. Phys. Chem. A
110
, 13877
(2006
).70.
K. A.
Peterson
, D.
Figgen
, E.
Goll
, H.
Stoll
, and M.
Dolg
, J. Chem. Phys.
119
, 11113
(2003
).71.
D. P.
Tew
and W.
Klopper
, J. Chem. Phys.
123
, 074101
(2005
).72.
R. A.
Kendall
, T. H.
Dunning
, Jr., and R. J.
Harrison
, J. Chem. Phys.
96
, 6796
(1992
).73.
T.
van Mourik
, A. K.
Wilson
, and T. H.
Dunning
, Jr., Mol. Phys.
96
, 529
(1999
).74.
A. K.
Wilson
, T.
van Mourik
, and T. H.
Dunning
, J. Mol. Struct.: THEOCHEM
388
, 339
(1996
).75.
F.
Weigend
, A.
Köhn
, and C.
Hättig
, J. Chem. Phys.
116
, 3175
(2002
).76.
G.
Knizia
, “Explicitly correlated quantum chemistry methods for high-spin open-shell molecules
,” Ph.D. thesis, Institut für Theoretische Chemie der Universität Stuttgart
, 2010
.77.
J.
Řezáč
, K. E.
Riley
, and P.
Hobza
, J. Chem. Theory Comput.
7
, 2427
(2011
).78.
C.
Garau
, A.
Frontera
, D.
Quiñonero
, N.
Russo
, and P. M.
Deyà
, J. Chem. Theory Comput.
7
, 3012
(2011
).79.
H.
Wang
, W.
Wang
, and W. J.
Jin
, Chem. Rev.
116
, 5072
(2016
).80.
S.
Kozuch
and J. M. L.
Martin
, J. Chem. Theory Comput.
9
, 1918
(2013
).© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.