Self-learning hybrid Monte Carlo (SLHMC) is a first-principles simulation that allows for exact ensemble generation on potential energy surfaces based on density functional theory. The statistical sampling can be accelerated with the assistance of smart trial moves by machine learning potentials. In the first report [Nagai et al., Phys. Rev. B 102, 041124(R) (2020)], the SLHMC approach was introduced for the simplest case of canonical sampling. We herein extend this idea to isothermal–isobaric ensembles to enable general applications for soft materials and liquids with large volume fluctuation. As a demonstration, the isothermal–isobaric SLHMC method was used to study the vibrational structure of liquid silica at temperatures close to the melting point, whereby the slow diffusive motion is beyond the time scale of first-principles molecular dynamics. It was found that the static structure factor thus computed from first-principles agrees quite well with the high-energy x-ray data.

1.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlation effects
,”
Phys. Rev.
140
,
A1133
A1138
(
1965
).
2.
Y.
Nagai
,
M.
Okumura
,
K.
Kobayashi
, and
M.
Shiga
, “
Self-learning hybrid Monte Carlo: A first-principles approach
,”
Phys. Rev. B
102
,
041124(R)
(
2020
).
3.
S.
Gottlieb
,
W.
Liu
,
D.
Toussaint
,
R. L.
Renken
, and
R. L.
Sugar
, “
Hybrid-molecular-dynamics algorithms for the numerical simulation of quantum chromodynamics
,”
Phys. Rev. D
35
,
2531
2542
(
1987
).
4.
S.
Duane
,
A. D.
Kennedy
,
B. J.
Pendleton
, and
D.
Roweth
, “
Hybrid Monte Carlo
,”
Phys. Lett. B
195
,
216
222
(
1987
).
5.
B.
Mehlig
,
D. W.
Heermann
, and
B. M.
Forrest
, “
Hybrid Monte Carlo method for condensed-matter systems
,”
Phys. Rev. B
45
,
679
685
(
1992
).
6.
W.
Shinoda
,
M.
Shiga
, and
M.
Mikami
, “
Rapid estimation of elastic constants by molecular dynamics simulation under constant stress
,”
Phys. Rev. B
69
,
134103
(
2004
).
7.
A.
Nakayama
,
T.
Taketsugu
, and
M.
Shiga
, “
Speed-up of ab initio hybrid Monte Carlo and ab initio path integral hybrid Monte Carlo simulations by using an auxiliary potential energy surface
,”
Chem. Lett.
38
,
976
977
(
2009
).
8.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
9.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
10.
J.
Behler
, “
Constructing high-dimensional neural network potentials: A tutorial review
,”
Int. J. Quantum Chem.
115
,
1032
1050
(
2015
).
11.
A. P.
Bartók
and
G.
Csányi
, “
Gaussian approximation potentials: A brief tutorial introduction
,”
Int. J. Quantum Chem.
115
,
1051
1057
(
2015
).
12.
J.
Behler
, “
Perspective: Machine learning potentials for atomistic simulations
,”
J. Chem. Phys.
145
,
170901
(
2016
).
13.
Q.
Mei
,
C. J.
Benmore
, and
J. K. R.
Weber
, “
Structure of liquid SiO2: A measurement by high-energy x-ray diffraction
,”
Phys. Rev. Lett.
98
,
057802
(
2007
).
14.
P.
Vashishta
,
R. K.
Kalia
,
J. P.
Rino
, and
I.
Ebbsjö
, “
Interaction potential for SiO2: A molecular-dynamics study of structural correlations
,”
Phys. Rev. B
41
,
12197
12209
(
1990
).
15.
W.
Kob
, “
Computer simulations of supercooled liquids and glasses
,”
J. Phys.: Condens. Matter
11
,
R85
R115
(
1999
).
16.
R. E.
Ryltsev
,
N. M.
Chtchelkatchev
, and
V. N.
Ryzhov
, “
Superfragile glassy dynamics of a one-component system with isotropic potential: Competition of diffusion and frustration
,”
Phys. Rev. Lett.
110
,
025701
(
2013
).
17.
J.
Geske
,
B.
Drossel
, and
M.
Vogel
, “
Fragile-to-strong transition in liquid silica
,”
AIP Adv.
6
,
035131
(
2016
).
18.
J.
Sarnthein
,
A.
Pasquarello
, and
R.
Car
, “
Structural and electronic properties of liquid and amorphous SiO2: An ab initio molecular dynamics study
,”
Phys. Rev. Lett.
74
,
4682
4685
(
1995
).
19.
J.
Sarnthein
,
A.
Pasquarello
, and
R.
Car
, “
Model of vitreous SiO2 generated by an ab initio molecular-dynamics quench from the melt
,”
Phys. Rev. B
52
,
12690
12695
(
1995
).
20.
M.
Kim
,
K. H.
Khoo
, and
J. R.
Chelikowsky
, “
Simulating liquid and amorphous silicon dioxide using real-space pseudopotentials
,”
Phys. Rev. B
86
,
054104
(
2012
).
21.
W.
Li
and
Y.
Ando
, “
Comparison of different machine learning models for the prediction of forces in copper and silicon dioxide
,”
Phys. Chem. Chem. Phys.
20
,
30006
30020
(
2018
).
22.
I. A.
Balyakin
,
S. V.
Rempel
,
R. E.
Ryltsev
, and
A. A.
Rempel
, “
Deep machine learning interatomic potential for liquid silica
,”
Phys. Rev. E
102
,
052125
(
2020
).
23.
N.
Artrith
and
A.
Urban
, “
An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2
,”
Comput. Mater. Sci.
114
,
135
150
(
2016
).
24.
A. M.
Miksch
,
T.
Morawietz
,
J.
Kästner
,
A.
Urban
, and
N.
Artrith
, “
Strategies for the construction of machine-learning potentials for accurate and efficient atomic-scale simulations
,” (
2021
); arXiv:2101.10468 [cond-mat.mtrl-sci].
25.
M.
Tuckerman
,
Statistical Mechanics: Theory and Molecular Simulation
(
Oxford University Press
,
2010
).
26.
M.
Shiga
, PIMD: An open-source software for parallel molecular simulations, https://ccse.jaea.go.jp/software/PIMD/index.en.html.
27.
S.
Ruiz-Barragan
,
K.
Ishimura
, and
M.
Shiga
, “
On the hierarchical parallelization of ab initio simulations
,”
Chem. Phys. Lett.
646
,
130
135
(
2016
).
28.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
561
(
1993
).
29.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
30.
A. M.
Cooper
,
J.
Kästner
,
A.
Urban
, and
N.
Artrith
, “
Efficient training of ANN potentials by including atomic forces via Taylor expansion and application to water and a transition-metal oxide
,”
npj Comput. Mater.
6
,
54
(
2020
).
31.
N.
Artrith
,
A.
Urban
, and
G.
Ceder
, “
Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species
,”
Phys. Rev. B
96
,
014112
(
2017
).
32.
N.
Artrith
, , version 2.0.3, http://ann.atomistic.net/.
33.
J. P.
Perdew
, “
Accurate density functional for the energy: Real-space cutoff of the gradient expansion for the exchange hole
,”
Phys. Rev. Lett.
55
,
1665
1668
(
1985
).
34.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
35.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
, 88th ed. (
CRC Press
,
2007
).
36.
J. F.
Bacon
,
A. A.
Hasapis
, and
J. W.
Wholley
, Jr., “
Viscosity and density of molten silica and high silica content glasses
,”
Phys. Chem. Glasses
1
,
90
98
(
1960
).
37.
I. A.
Aksay
,
J. A.
Pask
, and
R. F.
Davis
, “
Densities of SiO2-Al2O3 melts
,”
J. Am. Ceram. Soc.
62
,
332
336
(
1979
).
38.
B. W. H.
van Beest
,
G. J.
Kramer
, and
R. A.
van Santen
, “
Force fields for silicas and aluminophosphates based on ab initio calculations
,”
Phys. Rev. Lett.
64
,
1955
1958
(
1990
).
39.
T. E.
Faber
and
J. M.
Ziman
, “
A theory of the electrical properties of liquid metals
,”
Philos. Mag.
11
,
153
173
(
1965
).
40.
D.
Waasmaier
and
A.
Kirfel
, “
New analytical scattering actor functions for free atoms and ions
,”
Acta Crystallogr., Sect. A: Found. Crystallogr.
51
,
416
431
(
1995
).
41.
F.
Wang
and
D. P.
Landau
, “
Efficient, multiple-range random walk algorithm to calculate the density of states
,”
Phys. Rev. Lett.
86
,
2050
2053
(
2001
).
42.
A.
Laio
and
M.
Parrinello
, “
Escaping free-energy minima
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
12566
(
2002
).
43.
K.
Momma
and
F.
Izumi
, “
VESTA: A three-dimensional visualization system for electronic and structural analysis
,”
J. Appl. Crystallogr.
41
,
653
658
(
2008
).

Supplementary Material

You do not currently have access to this content.