Ligand coated nanoparticles are complex objects consisting of a metallic or semiconductor core with organic ligands grafted on their surface. These organic ligands provide stability to a nanoparticle suspension. In solutions, the effective interactions between such nanoparticles are mediated through a complex interplay of interactions between the nanoparticle cores, the surrounding ligands, and the solvent molecules. While it is possible to compute these interactions using fully atomistic molecular simulations, such computations are too expensive for studying self-assembly of a large number of nanoparticles. The problem can be made tractable by removing the degrees of freedom associated with the ligand chains and solvent molecules and using the potentials of mean force (PMF) between nanoparticles. In general, the functional dependence of the PMF on the inter-particle distance is unknown and can be quite complex. In this article, we present a method to model the two-body and three-body PMF between ligand coated nanoparticles through a linear combination of symmetry functions. The method is quite general and can be extended to model interactions between different types of macromolecules.

1.
D. V.
Talapin
,
J.-S.
Lee
,
M. V.
Kovalenko
, and
E. V.
Shevchenko
,
Chem. Rev.
110
,
389
(
2010
).
2.
S. E. F.
Kleijn
,
S. C. S.
Lai
,
M. T. M.
Koper
, and
P. R.
Unwin
,
Angew. Chem., Int. Ed.
53
,
3558
(
2014
).
3.
C.
Wang
,
H.
Yin
,
S.
Dai
, and
S.
Sun
,
Chem. Mater.
22
,
3277
(
2010
).
4.
Y.
Kang
,
X.
Ye
,
J.
Chen
,
Y.
Cai
,
R. E.
Diaz
,
R. R.
Adzic
,
E. A.
Stach
, and
C. B.
Murray
,
J. Am. Chem. Soc.
135
,
42
(
2013
).
5.
Y.
Kang
,
X.
Ye
,
J.
Chen
,
L.
Qi
,
R. E.
Diaz
,
V.
Doan-Nguyen
,
G.
Xing
,
C. R.
Kagan
,
J.
Li
,
R. J.
Gorte
,
E. A.
Stach
, and
C. B.
Murray
,
J. Am. Chem. Soc.
135
,
1499
(
2013
).
6.
M.
Brust
,
M.
Walker
,
D.
Bethell
,
D. J.
Schiffrin
, and
R.
Whyman
,
J. Chem. Soc., Chem. Commun.
1994
,
801
.
7.
R.
Sardar
,
A. M.
Funston
,
P.
Mulvaney
, and
R. W.
Murray
,
Langmuir
25
,
13840
(
2009
).
8.
Y.
Kumari
,
G.
Kaur
,
R.
Kumar
,
S. K.
Singh
,
M.
Gulati
,
R.
Khursheed
,
A.
Clarisse
,
K.
Gowthamarajan
,
V. V. S. N. R.
Karri
,
R.
Mahalingam
et al.,
Adv. Colloid Interface Sci.
274
,
102037
(
2019
).
9.
U.
Landman
and
W. D.
Luedtke
,
Faraday Discuss.
125
,
1
(
2004
).
10.
P.
Schapotschinikow
and
T. J. H.
Vlught
,
J. Chem. Phys.
131
,
124705
(
2009
).
11.
G.
Bauer
,
N.
Gribova
,
A.
Lange
,
C.
Holm
, and
J.
Gross
,
Mol. Phys.
115
,
1031
(
2017
).
12.
X.
Liu
,
P.
Lu
, and
H.
Zhai
,
J. Appl. Phys.
123
,
045101
(
2018
).
13.
X.
Liu
,
P.
Lu
, and
H.
Zhai
,
J. Chem. Phys.
150
,
034702
(
2019
).
14.
X.
Liu
,
Y.
Ni
, and
L.
He
,
Soft Matter
15
,
8392
(
2020
).
15.
D.
Monego
,
T.
Kister
,
N.
Kirkwood
,
P.
Mulvaney
,
A.
Widmer-Cooper
, and
T.
Kraus
,
Langmuir
34
,
12982
(
2018
).
16.
A.
Travesset
,
Soft Matter
13
,
147
(
2017
).
18.
X.
Zha
and
A.
Travesset
,
J. Phys. Chem. C
125
,
18936
(
2021
).
19.
N.
Patel
and
S. A.
Egorov
,
J. Chem. Phys.
126
,
054706
(
2007
).
20.
P.
Schapotschinikow
,
R.
Pool
, and
T. J. H.
Vlught
,
Nano Lett.
8
,
2930
(
2008
).
21.
A. P.
Kaushik
and
P.
Clancy
,
J. Comput. Chem.
34
,
523
(
2013
).
22.
B. S.
Jabes
,
H. O. S.
Yadav
,
S. K.
Kumar
, and
C.
Chakravarty
,
J. Chem. Phys.
141
,
154904
(
2014
).
23.
T.-Y.
Tang
and
G.
Arya
,
Macromolecules
50
,
1167
(
2017
).
24.
Ł.
Baran
and
S.
Sokołowski
,
J. Chem. Phys.
147
,
044903
(
2017
).
25.
C.
Liepold
,
A.
Smith
,
B.
Lin
,
J.
de Pablo
, and
S. A.
Rice
,
J. Chem. Phys.
150
,
044904
(
2019
).
26.
H. O. S.
Yadav
,
Soft Matter
16
,
9262
(
2020
).
27.
D.
Monego
,
T.
Kister
,
N.
Kirkwood
,
D.
Doblas
,
P.
Mulvaney
,
T.
Kraus
, and
A.
Widmer-Cooper
,
ACS Nano
14
,
5278
(
2020
).
28.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. Lett.
104
,
136403
(
2010
).
29.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
Von Lilienfeld
,
Phys. Rev. Lett.
108
,
058301
(
2012
).
30.
F. A.
Faber
,
A.
Lindmaa
,
O. A.
Von Lilienfeld
, and
R.
Armiento
,
Phys. Rev. Lett.
117
,
135502
(
2016
).
31.
J.
Behler
,
J. Chem. Phys.
145
,
170901
(
2016
).
32.
A.
Glielmo
,
P.
Sollich
, and
A.
De Vita
,
Phys. Rev. B
95
,
214302
(
2017
).
33.
A.
Grisafi
,
D. M.
Wilkins
,
G.
Csányi
, and
M.
Ceriotti
,
Phys. Rev. Lett.
120
,
036002
(
2018
).
34.
E.
Boattini
,
N.
Bezem
,
S. N.
Punnathanam
,
F.
Smallenburg
, and
L.
Filion
,
J. Chem. Phys.
153
,
064902
(
2020
).
35.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
36.
J.
Behler
,
J. Chem. Phys.
134
,
074106
(
2011
).
37.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
,
SoftwareX
1–2
,
19
(
2015
).
38.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
,
J. Comput. Chem.
30
,
2157
(
2009
).
39.
G.
Imbalzano
,
A.
Anelli
,
D.
Giofré
,
S.
Klees
,
J.
Behler
, and
M.
Ceriotti
,
J. Chem. Phys.
148
,
241730
(
2018
).
You do not currently have access to this content.