The reasons for the sluggish kinetics of the hydrogen adsorption reaction in alkaline media remain a question still to be solved. This information is important to achieve a complete understanding of the mechanistic details that could lead to the production of key catalytic materials necessary for the development of a future hydrogen economy. For a better understanding of this reaction, it is important to acquire information about the thermodynamic parameters characteristic of the different steps in the reaction. Among these, the hydrogen adsorption is a key step in the process of hydrogen evolution. Although some debate still remains about the difference between adsorbed hydrogen in the underpotential deposition (UPD) region and at the overpotential deposition region, there is no doubt that understanding the former can help in the understanding of the latter. Making use of charge density measurements, we report on this paper a thermodynamic study of the hydrogen UPD process on Pt(111) in 0.05M NaOH over the range of temperatures from 283 ≤ T/K ≤ 313. The coulometric features corresponding to HUPD allow for the calculation of the hydrogen coverage and a fit to a Generalized Frumkin isotherm. From these values, different thermodynamic functions for the UPD reaction have been calculated: ΔGads, ΔSads, ΔHads, and the Pt–H bond energy. From extrapolation, a value of ΔSads=7.5±4Jmol1K1 was found, which is very close to 0, much lower than previously reported measurements both in acid and in alkaline solutions. Such value has an effect on the enthalpy and bond energy calculations, the latter having a decreasing tendency with pH and coverage. This tendency is completely different from the acidic systems and implies that the change in the thermodynamic functions due to the formation of the double layer and the reorganization of interfacial water has a strong influence on the process in high pH solutions.

1.
V. R.
Stamenkovic
,
D.
Strmcnik
,
P. P.
Lopes
, and
N. M.
Markovic
, “
Energy and fuels from electrochemical interfaces
,”
Nat. Mater.
16
,
57
(
2017
).
2.
H. A.
Gasteiger
and
N. M.
Marković
, “
Just a dream or future reality?
,”
Science
324
,
48
49
(
2009
).
3.
J.O'M.
Bockris
, “
The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment
,”
Int. J. Hydrogen Energy
27
,
731
740
(
2002
).
4.
R.
Oelgeklaus
,
J.
Rose
, and
H.
Baltruschat
, “
On the rate of hydrogen and iodine adsorption on polycrystalline Pt and Pt(111)
,”
J. Electroanal. Chem.
376
,
127
133
(
1994
).
5.
K. J. P.
Schouten
,
M. J. T. C.
Van Der Niet
, and
M. T. M.
Koper
, “
Impedance spectroscopy of H and OH adsorption on stepped single-crystal platinum electrodes in alkaline and acidic media
,”
Phys. Chem. Chem. Phys.
12
,
15217
15224
(
2010
).
6.
Y.
Zheng
,
Y.
Jiao
,
A.
Vasileff
, and
S. Z.
Qiao
, “
The hydrogen evolution reaction in alkaline solution: From theory, single crystal models, to practical electrocatalysts
,”
Angew. Chem., Int. Ed.
57
,
7568
7579
(
2018
).
7.
L. E.
Botello
,
J. M.
Feliu
, and
V.
Climent
, “
Activation energy of hydrogen adsorption on Pt(111) in alkaline media: An impedance spectroscopy study at variable temperatures
,”
ACS Appl. Mater. Interfaces
12
,
42911
42917
(
2020
).
8.
M.
Zeng
and
Y.
Li
, “
Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction
,”
J. Mater. Chem. A
3
,
14942
(
2015
).
9.
J.
Clavilier
, “
The role of anion on the electrochemical behaviour of a {111} platinum surface; an unusual splitting of the voltammogram in the hydrogen region
,”
J. Electroanal. Chem. Interfacial Electrochem.
107
,
211
216
(
1979
).
10.
L.
Rebollar
,
S.
Intikhab
,
N. J.
Oliveira
,
Y.
Yan
,
B.
Xu
,
I. T.
McCrum
,
J. D.
Snyder
, and
M. H.
Tang
, “
‘Beyond adsorption’ descriptors in hydrogen electrocatalysis
,”
ACS Catal.
10
,
14747
14762
(
2020
).
11.
J. H.
Barber
and
B. E.
Conway
, “
Structural specificity of the kinetics of the hydrogen evolution reaction on the low-index surfaces of Pt single-crystal electrodes in 0.5 M dm−3 NaOH
,”
J. Electroanal. Chem.
461
,
80
89
(
1999
).
12.
J.
Durst
,
A.
Siebel
,
C.
Simon
,
F.
Hasché
,
J.
Herranz
, and
H. A.
Gasteiger
, “
New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism
,”
Energy Environ. Sci.
7
,
2255
2260
(
2014
).
13.
L.
Liu
,
Y.
Liu
, and
C.
Liu
, “
Enhancing the understanding of hydrogen evolution and oxidation reactions on Pt(111) through ab initio simulation of electrode/electrolyte kinetics
,”
J. Am. Chem. Soc.
142
,
4985
4989
(
2020
); arXiv:1912.01152.
14.
I.
Ledezma-Yanez
,
W. D. Z.
Wallace
,
P.
Sebastián-Pascual
,
V.
Climent
,
J. M.
Feliu
, and
M. T.
Koper
, “
Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes
,”
Nat. Energy
2
,
17031
(
2017
).
15.
G.
Jerkiewicz
and
A.
Zolfaghari
, “
Determination of the energy of the metal-underpotential-deposited hydrogen bond for rhodium electrodes
,”
J. Phys. Chem.
100
,
8454
8461
(
1996
).
16.
N. M.
Marković
,
B. N.
Grgur
, and
P. N.
Ross
, “
Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions
,”
J. Phys. Chem. B
101
,
5405
5413
(
1997
).
17.
N. M.
Marković
,
T. J.
Schmidt
,
B. N.
Grgur
,
H. A.
Gasteiger
,
R. J.
Behm
, and
P. N.
Ross
, “
Effect of temperature on surface processes at the Pt(111)−liquid interface: Hydrogen adsorption, oxide formation, and CO oxidation
,”
J. Phys. Chem. B
103
,
8568
8577
(
1999
).
18.
A.
Zolfaghari
and
G.
Jerkiewicz
, “
Temperature-dependent research on Pt(111) and Pt(100) electrodes in aqueous H2SO4
,”
J. Electroanal. Chem.
467
,
177
185
(
1999
).
19.
G.
Jerkiewicz
, “
Electrochemical hydrogen adsorption and absorption. Part 1: Under-potential deposition of hydrogen
,”
Electrocatalysis
1
,
179
199
(
2010
).
20.
S.
Zhu
,
X.
Qin
,
Y.
Yao
, and
M.
Shao
, “
pH-dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy
,”
J. Am. Chem. Soc.
142
,
8748
8754
(
2020
).
21.
J.
Clavilier
,
D.
Armand
,
S. G.
Sun
, and
M.
Petit
, “
Electrochemical adsorption behaviour of platinum stepped surfaces in sulphuric acid solutions
,”
J. Electroanal. Chem.
205
,
267
277
(
1986
).
22.
C.
Korzeniewski
,
V.
Climent
, and
J.
Feliu
, “
Electrochemistry at platinum single crystal electrodes
,” in
Electroanalytical Chemistry: A Series of Advances
, edited by
A. J.
Bard
and
C. G.
Zoski
(
CRC Press
,
Boca Raton, FL
,
2012
), Chap. 2, pp.
75
170
.
23.
M. J.
Vasile
and
C. G.
Enke
, “
The preparation and thermodynamic properties of a palladium-hydrogen electrode
,”
J. Electrochem. Soc.
112
,
865
870
(
1965
).
24.
R.
Gómez
,
J. M.
Orts
,
B.
Álvarez-Ruiz
, and
J. M.
Feliu
, “
Effect of temperature on hydrogen adsorption on Pt(111), Pt(110), and Pt(100) electrodes in 0.1 M HClO4
,”
J. Phys. Chem. B
108
,
228
238
(
2004
).
25.
N.
Garcia-Araez
,
V.
Climent
, and
J. M.
Feliu
, “
Temperature effects on platinum single-crystal/aqueous solution interphases. Combining Gibbs thermodynamics with laser-pulsed experiments
,” in
Interfacial Phenomena in Electrocatalysis
, Modern Aspects of Electrochemistry Vol. 51, edited by
C. G.
Vayenas
(
Springer
,
New York
,
2011
), Chap. 1, pp.
1
105
.
26.
E.
Gileadi
,
Electrode Kinetics for Chemists, Chemical Engineers and Materials Scientists
(
VCH
,
Weinheim
,
1993
).
27.
B. E.
Conway
,
H.
Angerstein-Kozlowska
, and
W. B. A.
Sharp
, “
Temperature and pressure effects on surface processes at noble metal electrodes. Part 1.—Entropy of chemisorption of H at Pt surfaces
,”
J. Chem. Soc., Faraday Trans. 1
74
,
1373
1389
(
1978
).
28.
T.
Cheng
,
L.
Wang
,
B. V.
Merinov
, and
W. A.
Goddard
, “
Explanation of dramatic pH-dependence of hydrogen binding on noble metal electrode: Greatly weakened water adsorption at high pH
,”
J. Am. Chem. Soc.
140
,
7787
7790
(
2018
).
29.
V.
Briega-Martos
,
A.
Ferre-Vilaplana
,
E.
Herrero
, and
J. M.
Feliu
, “
Why the activity of the hydrogen oxidation reaction on platinum decreases as pH increases
,”
Electrochim. Acta
354
,
136620
(
2020
).
30.
W.
Sheng
,
Z.
Zhuang
,
M.
Gao
,
J.
Zheng
,
J. G.
Chen
, and
Y.
Yan
, “
Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy
,”
Nat. Commun.
6
,
5848
(
2015
).
31.
E.
Skúlason
,
G. S.
Karlberg
,
J.
Rossmeisl
,
T.
Bligaard
,
J.
Greeley
,
H.
Jónsson
, and
J. K.
Nørskov
, “
Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode
,”
Phys. Chem. Chem. Phys.
9
,
3241
3250
(
2007
).
32.
G.
Jerkiewicz
and
A.
Zolfaghari
, “
Comparison of hydrogen electroadsorption from the electrolyte with hydrogen adsorption from the gas phase
,”
J. Electrochem. Soc.
143
,
1240
1248
(
1996
).
33.
A.
Zolfaghari
,
M.
Chayer
, and
G.
Jerkiewicz
, “
Energetics of the underpotential deposition of hydrogen on platinum electrodes: I. Absence of coadsorbed species
,”
J. Electrochem. Soc.
144
,
3034
3041
(
1997
).
34.
F. J.
Sarabia
,
P.
Sebastián-Pascual
,
M. T. M.
Koper
,
V.
Climent
, and
J. M.
Feliu
, “
Effect of the interfacial water structure on the hydrogen evolution reaction on Pt(111) modified with different nickel hydroxide coverages in alkaline media
,”
ACS Appl. Mater. Interfaces
11
,
613
623
(
2019
).
35.
G.
Yang
,
S. A.
Akhade
,
X.
Chen
,
Y.
Liu
,
M. S.
Lee
,
V. A.
Glezakou
,
R.
Rousseau
, and
J. A.
Lercher
, “
The nature of hydrogen adsorption on platinum in the aqueous phase
,”
Angew. Chem., Int. Ed.
58
,
3527
3532
(
2019
).
36.
J.
Zheng
,
W.
Sheng
,
Z.
Zhuang
,
B.
Xu
, and
Y.
Yan
, “
Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy
,”
Sci. Adv.
2
,
e1501602
(
2016
).
37.
P. S.
Lamoureux
,
A. R.
Singh
, and
K.
Chan
, “
pH effects on hydrogen evolution and oxidation over Pt(111): Insights from first-principles
,”
ACS Catal.
9
,
6194
6201
(
2019
).
38.
Q.
Jia
,
E.
Liu
,
L.
Jiao
,
J.
Li
, and
S.
Mukerjee
, “
Current understandings of the sluggish kinetics of the hydrogen evolution and oxidation reactions in base
,”
Curr. Opin. Electrochem.
12
,
209
(
2018
).
39.
S.
Intikhab
,
J. D.
Snyder
, and
M. H.
Tang
, “
Adsorbed hydroxide does not participate in the volmer step of alkaline hydrogen electrocatalysis
,”
ACS Catal.
7
,
8314
8319
(
2017
).
40.
B. E.
Conway
,
H.
Angerstein-Kozlowska
, and
H. P.
Dhar
, “
On selection of standard states in adsorption isotherms
,”
Electrochim. Acta
19
,
445
460
(
1974
).
You do not currently have access to this content.