Unraveling the atomistic and the electronic structure of solid–liquid interfaces is the key to the design of new materials for many important applications, from heterogeneous catalysis to battery technology. Density functional theory (DFT) calculations can, in principle, provide a reliable description of such interfaces, but the high computational costs severely restrict the accessible time and length scales. Here, we report machine learning-driven simulations of various interfaces between water and lithium manganese oxide (LixMn2O4), an important electrode material in lithium ion batteries and a catalyst for the oxygen evolution reaction. We employ a high-dimensional neural network potential to compute the energies and forces several orders of magnitude faster than DFT without loss in accuracy. In addition, a high-dimensional neural network for spin prediction is utilized to analyze the electronic structure of the manganese ions. Combining these methods, a series of interfaces is investigated by large-scale molecular dynamics. The simulations allow us to gain insights into a variety of properties, such as the dissociation of water molecules, proton transfer processes, and hydrogen bonds, as well as the geometric and electronic structure of the solid surfaces, including the manganese oxidation state distribution, Jahn–Teller distortions, and electron hopping.

1.
S.
Chu
and
A.
Majumdar
, “
Opportunities and challenges for a sustainable energy future
,”
Nature
488
,
294
303
(
2012
).
2.
D.
Larcher
and
J.-M.
Tarascon
, “
Towards greener and more sustainable batteries for electrical energy storage
,”
Nat. Chem.
7
,
19
29
(
2015
).
3.
P. G.
Bruce
,
B.
Scrosati
, and
J.-M.
Tarascon
, “
Nanomaterials for rechargeable lithium batteries
,”
Angew. Chem., Int. Ed.
47
,
2930
2946
(
2008
).
4.
J. B.
Goodenough
and
Y.
Kim
, “
Challenges for rechargeable Li batteries
,”
Chem. Mater.
22
,
587
603
(
2010
).
5.
J.
Suntivich
,
K. J.
May
,
H. A.
Gasteiger
,
J. B.
Goodenough
, and
Y.
Shao-Horn
, “
A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles
,”
Science
334
,
1383
1385
(
2011
).
6.
Z. W.
Seh
,
J.
Kibsgaard
,
C. F.
Dickens
,
I.
Chorkendorff
,
J. K.
Nørskov
, and
T. F.
Jaramillo
, “
Combining theory and experiment in electrocatalysis: Insights into materials design
,”
Science
355
,
eaad4998
(
2017
).
7.
N.-T.
Suen
,
S.-F.
Hung
,
Q.
Quan
,
N.
Zhang
,
Y.-J.
Xu
, and
H. M.
Chen
, “
Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives
,”
Chem. Soc. Rev.
46
,
337
365
(
2017
).
8.
M. M.
Thackeray
,
W. I. F.
David
,
P. G.
Bruce
, and
J. B.
Goodenough
, “
Lithium insertion into manganese spinels
,”
Mater. Res. Bull.
18
,
461
472
(
1983
).
9.
M. M.
Thackeray
, “
Manganese oxides for lithium batteries
,”
Prog. Solid State Chem.
25
,
1
71
(
1997
).
10.
C. W.
Cady
,
G.
Gardner
,
Z. O.
Maron
,
M.
Retuerto
,
Y. B.
Go
,
S.
Segan
,
M.
Greenblatt
, and
G. C.
Dismukes
, “
Tuning the electrocatalytic water oxidation properties of AB2O4 spinel nanocrystals: A (Li, Mg, Zn) and B (Mn, Co) site variants of LiMn2O4
,”
ACS Catal.
5
,
3403
3410
(
2015
).
11.
L.
Köhler
,
M.
Ebrahimizadeh Abrishami
,
V.
Roddatis
,
J.
Geppert
, and
M.
Risch
, “
Mechanistic parameters of electrocatalytic water oxidation on LiMn2O4 in comparison to natural photosynthesis
,”
ChemSusChem
10
,
4479
4490
(
2017
).
12.
H.
Kim
,
J.
Hong
,
K.-Y.
Park
,
H.
Kim
,
S.-W.
Kim
, and
K.
Kang
, “
Aqueous rechargeable Li and Na ion batteries
,”
Chem. Rev.
114
,
11788
11827
(
2014
).
13.
N.
Alias
and
A. A.
Mohamad
, “
Advances of aqueous rechargeable lithium-ion battery: A review
,”
J. Power Sources
274
,
237
251
(
2015
).
14.
Y.
Takahashi
,
J.
Akimoto
,
Y.
Gotoh
,
K.
Dokko
,
M.
Nishizawa
, and
I.
Uchida
, “
Structure and electron density analysis of lithium manganese oxides by single-crystal X-ray diffraction
,”
J. Phys. Soc. Jpn.
72
,
1483
1490
(
2003
).
15.
J.
Akimoto
,
Y.
Takahashi
,
N.
Kijima
, and
Y.
Gotoh
, “
Single-crystal X-ray structure analysis of the low temperature form of LiMn2O4
,”
Solid State Ionics
172
,
491
494
(
2004
).
16.
P.
Piszora
, “
Temperature dependence of the order and distribution of Mn3+ and Mn4+ cations in orthorhombic LiMn2O4
,”
J. Alloys Compd.
382
,
112
118
(
2004
).
17.
J. C.
Hunter
, “
Preparation of a new crystal form of manganese dioxide: λ-MnO2
,”
J. Solid State Chem.
39
,
142
147
(
1981
).
18.
V.
Stamenkovic
,
B. S.
Mun
,
K. J. J.
Mayrhofer
,
P. N.
Ross
,
N. M.
Markovic
,
J.
Rossmeisl
,
J.
Greeley
, and
J. K.
Nørskov
, “
Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure
,”
Angew. Chem., Int. Ed.
45
,
2897
2901
(
2006
).
19.
M.
Gauthier
,
T. J.
Carney
,
A.
Grimaud
,
L.
Giordano
,
N.
Pour
,
H.-H.
Chang
,
D. P.
Fenning
,
S. F.
Lux
,
O.
Paschos
,
C.
Bauer
,
F.
Maglia
,
S.
Lupart
,
P.
Lamp
, and
Y.
Shao-Horn
, “
Electrode–electrolyte interface in Li-ion batteries: Current understanding and new insights
,”
J. Phys. Chem. Lett.
6
,
4653
4672
(
2015
).
20.
F.
Schönewald
,
M.
Eckhoff
,
M.
Baumung
,
M.
Risch
,
P. E.
Blöchl
,
J.
Behler
, and
C. A.
Volkert
, “
A critical view on eg occupancy as a descriptor for oxygen evolution catalytic activity in LiMn2O4 nanoparticles
,” arXiv:2007.04217 [cond-mat.mtrl-sci] (
2020
).
21.
B.
Hammer
and
J. K.
Nørskov
, “
Theoretical surface science and catalysis—Calculations and concepts
,” in
Impact of Surface Science on Catalysis
, Advances in Catalysis Vol. 45 (
Academic Press
,
2000
), pp.
71
129
.
22.
T. F.
Jaramillo
,
K. P.
Jørgensen
,
J.
Bonde
,
J. H.
Nielsen
,
S.
Horch
, and
I.
Chorkendorff
, “
Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts
,”
Science
317
,
100
102
(
2007
).
23.
J. K.
Nørskov
,
T.
Bligaard
,
J.
Rossmeisl
, and
C. H.
Christensen
, “
Towards the computational design of solid catalysts
,”
Nat. Chem.
1
,
37
46
(
2009
).
24.
M.
Behrens
,
F.
Studt
,
I.
Kasatkin
,
S.
Kühl
,
M.
Hävecker
,
F.
Abild-Pedersen
,
S.
Zander
,
F.
Girgsdies
,
P.
Kurr
,
B.-L.
Kniep
,
M.
Tovar
,
R. W.
Fischer
,
J. K.
Nørskov
, and
R.
Schlögl
, “
The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts
,”
Science
336
,
893
897
(
2012
).
25.
Y.
Jiao
,
Y.
Zheng
,
M.
Jaroniec
, and
S. Z.
Qiao
, “
Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
,”
Chem. Soc. Rev.
44
,
2060
2086
(
2015
).
26.
R.
Benedek
,
M. M.
Thackeray
,
J.
Low
, and
T.
Bučko
, “
Simulation of aqueous dissolution of lithium manganate spinel from first principles
,”
J. Phys. Chem. C
116
,
4050
4059
(
2012
).
27.
A.
Bhandari
and
J.
Bhattacharya
, “
Review—Manganese dissolution from spinel cathode: Few unanswered questions
,”
J. Electrochem. Soc.
164
,
A106
A127
(
2017
).
28.
K.
Leung
, “
First-principles modeling of Mn(II) migration above and dissolution from LixMn2O4 (001) surfaces
,”
Chem. Mater.
29
,
2550
2562
(
2017
).
29.
M.
Hirayama
,
H.
Ido
,
K.
Kim
,
W.
Cho
,
K.
Tamura
,
J. i.
Mizuki
, and
R.
Kanno
, “
Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction
,”
J. Am. Chem. Soc.
132
,
15268
15276
(
2010
).
30.
K.
Leung
, “
Electronic structure modeling of electrochemical reactions at electrode/electrolyte interfaces in lithium ion batteries
,”
J. Phys. Chem. C
117
,
1539
1547
(
2013
).
31.
R.
Benedek
, “
Role of disproportionation in the dissolution of Mn from lithium manganate spinel
,”
J. Phys. Chem. C
121
,
22049
22053
(
2017
).
32.
R.
Schaub
,
P.
Thostrup
,
N.
Lopez
,
E.
Lægsgaard
,
I.
Stensgaard
,
J. K.
Nørskov
, and
F.
Besenbacher
, “
Oxygen vacancies as active sites for water dissociation on rutile TiO2(110)
,”
Phys. Rev. Lett.
87
,
266104
(
2001
).
33.
J.
Rossmeisl
,
Z.-W.
Qu
,
H.
Zhu
,
G.-J.
Kroes
, and
J. K.
Nørskov
, “
Electrolysis of water on oxide surfaces
,”
J. Electroanal. Chem.
607
,
83
89
(
2007
).
34.
M.
Bajdich
,
M.
García-Mota
,
A.
Vojvodic
,
J. K.
Nørskov
, and
A. T.
Bell
, “
Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water
,”
J. Am. Chem. Soc.
135
,
13521
13530
(
2013
).
35.
G.
Tocci
and
A.
Michaelides
, “
Solvent-induced proton hopping at a water–oxide interface
,”
J. Phys. Chem. Lett.
5
,
474
480
(
2014
).
36.
D.
Friebel
,
M. W.
Louie
,
M.
Bajdich
,
K. E.
Sanwald
,
Y.
Cai
,
A. M.
Wise
,
M.-J.
Cheng
,
D.
Sokaras
,
T.-C.
Weng
,
R.
Alonso-Mori
,
R. C.
Davis
,
J. R.
Bargar
,
J. K.
Nørskov
,
A.
Nilsson
, and
A. T.
Bell
, “
Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting
,”
J. Am. Chem. Soc.
137
,
1305
1313
(
2015
).
37.
A.
Karim
,
S.
Fosse
, and
K. A.
Persson
, “
Surface structure and equilibrium particle shape of the LiMn2O4 spinel from first-principles calculations
,”
Phys. Rev. B
87
,
075322
(
2013
).
38.
N.
Kumar
,
K.
Leung
, and
D. J.
Siegel
, “
Crystal surface and state of charge dependencies of electrolyte decomposition on LiMn2O4 cathode
,”
J. Electrochem. Soc.
161
,
E3059
E3065
(
2014
).
39.
Y. K.
Lee
,
J.
Park
, and
W.
Lu
, “
Electronic and bonding properties of LiMn2O4 spinel with different surface orientations and doping elements and their effects on manganese dissolution
,”
J. Electrochem. Soc.
163
,
A1359
A1368
(
2016
).
40.
R. E.
Warburton
,
H.
Iddir
,
L. A.
Curtiss
, and
J.
Greeley
, “
Thermodynamic stability of low- and high-index spinel LiMn2O4 surface terminations
,”
ACS Appl. Mater. Interfaces
8
,
11108
11121
(
2016
).
41.
M.
Eckhoff
,
P. E.
Blöchl
, and
J.
Behler
, “
Hybrid density functional theory benchmark study on lithium manganese oxides
,”
Phys. Rev. B
101
,
205113
(
2020
).
42.
K.
Leung
, “
First-principles modeling of the initial stages of organic solvent decomposition on LixMn2O4(100) surfaces
,”
J. Phys. Chem. C
116
,
9852
9861
(
2012
).
43.
D.
Choi
,
J.
Kang
,
J.
Park
, and
B.
Han
, “
First-principles study on thermodynamic stability of the hybrid interfacial structure of LiMn2O4 cathode and carbonate electrolyte in Li-ion batteries
,”
Phys. Chem. Chem. Phys.
20
,
11592
11597
(
2018
).
44.
N. N.
Intan
,
K.
Klyukin
, and
V.
Alexandrov
, “
Ab initio modeling of transition metal dissolution from the LiNi0.5Mn1.5O4 cathode
,”
ACS Appl. Mater. Interfaces
11
,
20110
20116
(
2019
).
45.
Y.
Okuno
,
K.
Ushirogata
,
K.
Sodeyama
,
G.
Shukri
, and
Y.
Tateyama
, “
Structures, electronic states, and reactions at interfaces between LiNi0.5Mn1.5O4 cathode and ethylene carbonate electrolyte: A first-principles study
,”
J. Phys. Chem. C
123
,
2267
2277
(
2019
).
46.
G.
Zhou
,
X.
Sun
,
Q.-H.
Li
,
X.
Wang
,
J.-N.
Zhang
,
W.
Yang
,
X.
Yu
,
R.
Xiao
, and
H.
Li
, “
Mn ion dissolution mechanism for lithium-ion battery with LiMn2O4 cathode: In situ ultraviolet-visible spectroscopy and ab initio molecular dynamics simulations
,”
J. Phys. Chem. Lett.
11
,
3051
3057
(
2020
).
47.
J.
Behler
, “
Perspective: Machine learning potentials for atomistic simulations
,”
J. Chem. Phys.
145
,
170901
(
2016
).
48.
A. P.
Bartók
,
S.
De
,
C.
Poelking
,
N.
Bernstein
,
J. R.
Kermode
,
G.
Csányi
, and
M.
Ceriotti
, “
Machine learning unifies the modeling of materials and molecules
,”
Sci. Adv.
3
,
e1701816
(
2017
).
49.
F.
Noé
,
A.
Tkatchenko
,
K.-R.
Müller
, and
C.
Clementi
, “
Machine learning for molecular simulation
,”
Annu. Rev. Phys. Chem.
71
,
361
390
(
2020
).
50.
J.
Behler
and
G.
Csányi
, “
Machine learning potentials for extended systems: A perspective
,”
Eur. Phys. J. B
94
,
142
(
2021
).
51.
T.
Morawietz
,
A.
Singraber
,
C.
Dellago
, and
J.
Behler
, “
How van der Waals interactions determine the unique properties of water
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
8368
8373
(
2016
).
52.
B.
Cheng
,
J.
Behler
, and
M.
Ceriotti
, “
Nuclear quantum effects in water at the triple point: Using theory as a link between experiments
,”
J. Phys. Chem. Lett.
7
,
2210
2215
(
2016
).
53.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
W.
E
, “
Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics
,”
Phys. Rev. Lett.
120
,
143001
(
2018
).
54.
B.
Cheng
,
E. A.
Engel
,
J.
Behler
,
C.
Dellago
, and
M.
Ceriotti
, “
Ab initio thermodynamics of liquid and solid water
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
1110
1115
(
2019
).
55.
T.
Wen
,
C.-Z.
Wang
,
M. J.
Kramer
,
Y.
Sun
,
B.
Ye
,
H.
Wang
,
X.
Liu
,
C.
Zhang
,
F.
Zhang
,
K.-M.
Ho
, and
N.
Wang
, “
Development of a deep machine learning interatomic potential for metalloid-containing Pd-Si compounds
,”
Phys. Rev. B
100
,
174101
(
2019
).
56.
N.
Artrith
, “
Machine learning for the modeling of interfaces in energy storage and conversion materials
,”
J. Phys.: Energy
1
,
032002
(
2019
).
57.
G. P. P.
Pun
,
V.
Yamakov
,
J.
Hickman
,
E. H.
Glaessgen
, and
Y.
Mishin
, “
Development of a general-purpose machine-learning interatomic potential for aluminum by the physically informed neural network method
,”
Phys. Rev. Mater.
4
,
113807
(
2020
).
58.
C.
Schran
,
F. L.
Thiemann
,
P.
Rowe
,
E. A.
Müller
,
O.
Marsalek
, and
A.
Michaelides
, “
Machine learning potentials for complex aqueous systems made simple
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2110077118
(
2021
); arXiv:2106.00048 [physics.chem-ph].
59.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
60.
J.
Behler
, “
Representing potential energy surfaces by high-dimensional neural network potentials
,”
J. Phys.: Condens. Matter
26
,
183001
(
2014
).
61.
J.
Behler
, “
Constructing high-dimensional neural network potentials: A tutorial review
,”
Int. J. Quantum Chem.
115
,
1032
1050
(
2015
).
62.
J.
Behler
, “
First principles neural network potentials for reactive simulations of large molecular and condensed systems
,”
Angew. Chem., Int. Ed.
56
,
12828
12840
(
2017
).
63.
J.
Behler
, “
Four generations of high-dimensional neural network potentials
,”
Chem. Rev.
121
,
10037
10072
(
2021
).
64.
M.
Eckhoff
,
F.
Schönewald
,
M.
Risch
,
C. A.
Volkert
,
P. E.
Blöchl
, and
J.
Behler
, “
Closing the gap between theory and experiment for lithium manganese oxide spinels using a high-dimensional neural network potential
,”
Phys. Rev. B
102
,
174102
(
2020
).
65.
M.
Eckhoff
,
K. N.
Lausch
,
P. E.
Blöchl
, and
J.
Behler
, “
Predicting oxidation and spin states by high-dimensional neural networks: Applications to lithium manganese oxide spinels
,”
J. Chem. Phys.
153
,
164107
(
2020
).
66.
M.
Eckhoff
and
J.
Behler
, “
High-dimensional neural network potentials for magnetic systems using spin-dependent atom-centered symmetry functions
,”
npj Comput. Mater.
7
,
170
(
2021
); arXiv:2104.14439 [physics.comp-ph].
67.
S. K.
Natarajan
and
J.
Behler
, “
Neural network molecular dynamics simulations of solid–liquid interfaces: Water at low-index copper surfaces
,”
Phys. Chem. Chem. Phys.
18
,
28704
28725
(
2016
).
68.
S. K.
Natarajan
and
J.
Behler
, “
Self-diffusion of surface defects at copper–water interfaces
,”
J. Phys. Chem. C
121
,
4368
4383
(
2017
).
69.
V.
Quaranta
,
M.
Hellström
, and
J.
Behler
, “
Proton transfer mechanisms at the water–ZnO interface: The role of presolvation
,”
J. Phys. Chem. Lett.
8
,
1476
1483
(
2017
).
70.
M.
Hellström
,
V.
Quaranta
, and
J.
Behler
, “
One-dimensional vs. two-dimensional proton transport processes at solid–liquid zinc-oxide–water interfaces
,”
Chem. Sci.
10
,
1232
1243
(
2019
).
71.
V.
Quaranta
,
J.
Behler
, and
M.
Hellström
, “
Structure and dynamics of the liquid–water/zinc-oxide interface from machine learning potential simulations
,”
J. Phys. Chem. C
123
,
1293
1304
(
2019
).
72.
N.
Artrith
,
T.
Morawietz
, and
J.
Behler
, “
High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide
,”
Phys. Rev. B
83
,
153101
(
2011
).
73.
S. A.
Ghasemi
,
A.
Hofstetter
,
S.
Saha
, and
S.
Goedecker
, “
Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network
,”
Phys. Rev. B
92
,
045131
(
2015
).
74.
O. T.
Unke
and
M.
Meuwly
, “
PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges
,”
J. Chem. Theory Comput.
15
,
3678
3693
(
2019
).
75.
X.
Xie
,
K. A.
Persson
, and
D. W.
Small
, “
Incorporating electronic information into machine learning potential energy surfaces via approaching the ground-state electronic energy as a function of atom-based electronic populations
,”
J. Chem. Theory Comput.
16
,
4256
4270
(
2020
).
76.
T. W.
Ko
,
J. A.
Finkler
,
S.
Goedecker
, and
J.
Behler
, “
A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer
,”
Nat. Commun.
12
,
398
(
2021
).
77.
S.
Houlding
,
S. Y.
Liem
, and
P. L. A.
Popelier
, “
A polarizable high-rank quantum topological electrostatic potential developed using neural networks: Molecular dynamics simulations on the hydrogen fluoride dimer
,”
Int. J. Quantum Chem.
107
,
2817
2827
(
2007
).
78.
T.
Bereau
,
D.
Andrienko
, and
O. A.
von Lilienfeld
, “
Transferable atomic multipole machine learning models for small organic molecules
,”
J. Chem. Theory Comput.
11
,
3225
3233
(
2015
).
79.
G.
Montavon
,
M.
Rupp
,
V.
Gobre
,
A.
Vazquez-Mayagoitia
,
K.
Hansen
,
A.
Tkatchenko
,
K.-R.
Mueller
, and
O. A.
von Lilienfeld
, “
Machine learning of molecular electronic properties in chemical compound space
,”
New J. Phys.
15
,
095003
(
2013
).
80.
K.
Schütt
,
M.
Gastegger
,
A.
Tkatchenko
,
K.-R.
Müller
, and
R.
Maurer
, “
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
,”
Nat. Commun.
10
,
5024
(
2019
).
81.
J.
Behler
, “
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
,”
J. Chem. Phys.
134
,
074106
(
2011
).
82.
M.
Sotoudeh
,
S.
Rajpurohit
,
P.
Blöchl
,
D.
Mierwaldt
,
J.
Norpoth
,
V.
Roddatis
,
S.
Mildner
,
B.
Kressdorf
,
B.
Ifland
, and
C.
Jooss
, “
Electronic structure of Pr1−xCaxMnO3
,”
Phys. Rev. B
95
,
235150
(
2017
).
83.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
84.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
85.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
86.
P. E.
Blöchl
, CP-PAW, https://www2.pt.tu-clausthal.de/paw/, September 28, 2016.
87.
J.
Behler
, RuNNer, http://gitlab.com/TheochemGoettingen/RuNNer, October 19, 2020.
88.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
89.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
90.
LAMMPS: Large-scale atomic/molecular massively parallel simulator, http://lammps.sandia.gov, August 7, 2019.
91.
A.
Singraber
,
J.
Behler
, and
C.
Dellago
, “
Library-based LAMMPS implementation of high-dimensional neural network potentials
,”
J. Chem. Theory Comput.
15
,
1827
1840
(
2019
).
92.
A.
Singraber
, n2p2: A neural network potential package, https://github.com/CompPhysVienna/n2p2, December 9, 2019.
93.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1984
).
94.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
95.
G.
Davies
, “
Some aspects of the chemistry of manganese(III) in aqueous solution
,”
Coord. Chem. Rev.
4
,
199
224
(
1969
).
96.
P. M.
Dove
,
N.
Han
, and
J. J.
De Yoreo
, “
Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
15357
15362
(
2005
).
97.
R.
Benedek
and
M. M.
Thackeray
, “
Simulation of the surface structure of lithium manganese oxide spinel
,”
Phys. Rev. B
83
,
195439
(
2011
).
98.
S.
Kim
,
M.
Aykol
, and
C.
Wolverton
, “
Surface phase diagram and stability of (001) and (111) LiMn2O4 spinel oxides
,”
Phys. Rev. B
92
,
115411
(
2015
).
99.
D.
Tang
,
Y.
Sun
,
Z.
Yang
,
L.
Ben
,
L.
Gu
, and
X.
Huang
, “
Surface structure evolution of LiMn2O4 cathode material upon charge/discharge
,”
Chem. Mater.
26
,
3535
3543
(
2014
).
100.
C. D.
Amos
,
M. A.
Roldan
,
M.
Varela
,
J. B.
Goodenough
, and
P. J.
Ferreira
, “
Revealing the reconstructed surface of Li[Mn2]O4
,”
Nano Lett.
16
,
2899
2906
(
2016
).
101.
X.
Gao
,
Y. H.
Ikuhara
,
C. A. J.
Fisher
,
R.
Huang
,
A.
Kuwabara
,
H.
Moriwake
,
K.
Kohamac
, and
Y.
Ikuhara
, “
Oxygen loss and surface degradation during electrochemical cycling of lithium-ion battery cathode material LiMn2O4
,”
J. Mater. Chem. A
7
,
8845
8854
(
2019
).
102.
W.
Wagner
and
A.
Pruß
, “
The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use
,”
J. Phys. Chem. Ref. Data
31
,
387
535
(
2002
).
103.
Y.
Zhang
and
W.
Yang
, “
Comment on ‘Generalized gradient approximation made simple
,’”
Phys. Rev. Lett.
80
,
890
(
1998
).
104.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
1999
).
105.
M.
Eckhoff
and
J.
Behler
, “
From molecular fragments to the bulk: Development of a neural network potential for MOF-5
,”
J. Chem. Theory Comput.
15
,
3793
3809
(
2019
).
106.
M. L.
Liriano
,
C.
Gattinoni
,
E. A.
Lewis
,
C. J.
Murphy
,
E. C. H.
Sykes
, and
A.
Michaelides
, “
Water–ice analogues of polycyclic aromatic hydrocarbons: Water nanoclusters on Cu(111)
,”
J. Am. Chem. Soc.
139
,
6403
6410
(
2017
).
107.
N.
Gerrard
,
C.
Gattinoni
,
F.
McBride
,
A.
Michaelides
, and
A.
Hodgson
, “
Strain relief during ice growth on a hexagonal template
,”
J. Am. Chem. Soc.
141
,
8599
8607
(
2019
).
108.
I.-C.
Lin
,
A. P.
Seitsonen
,
I.
Tavernelli
, and
U.
Rothlisberger
, “
Structure and dynamics of liquid water from ab initio molecular dynamics—Comparison of BLYP, PBE, and revPBE density functionals with and without van der Waals corrections
,”
J. Chem. Theory Comput.
8
,
3902
3910
(
2012
).
109.
M. J.
Gillan
,
D.
Alfè
, and
A.
Michaelides
, “
Perspective: How good is DFT for water?
,”
J. Chem. Phys.
144
,
013090
(
2016
).
110.
M.
Chen
,
H.-Y.
Ko
,
R. C.
Remsing
,
M. F. C.
Andrade
,
B.
Santra
,
Z.
Sun
,
A.
Selloni
,
R.
Car
,
M. L.
Klein
,
J. P.
Perdew
, and
X.
Wu
, “
Ab initio theory and modeling of water
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
10846
10851
(
2017
).
111.
Y.
Litman
,
D.
Donadio
,
M.
Ceriotti
, and
M.
Rossi
, “
Decisive role of nuclear quantum effects on surface mediated water dissociation at finite temperature
,”
J. Chem. Phys.
148
,
102320
(
2018
).
112.
N.
Artrith
and
J.
Behler
, “
High-dimensional neural network potentials for metal surfaces: A prototype study for copper
,”
Phys. Rev. B
85
,
045439
(
2012
).
113.
I. G.
Zurbenko
,
The Spectral Analysis of Time Series
(
Elsevier; North-Holland
,
Amsterdam
,
1986
).

Supplementary Material

You do not currently have access to this content.