Applying diffusion coupled deformation theory, we investigate how the elastic properties of a solid body are modified when forced to keep its chemical potential aligned with that of its melt. The theory is implemented at the classical level of continuum mechanics, treating materials as simple continua defined by uniform constitutive relations. A phase boundary is a sharp dividing surface separating two continua in mechanical and chemical equilibrium. We closely follow the continuum theory of the swelling of elastomers (gels) but now applied to a simple two phase one-component system. The liquid is modeled by a local free energy density defining a chemical potential and hydrostatic pressure as usual. The model is extended to a solid by adding a non-linear shear elastic energy term with an effective modulus depending on density. Imposing chemomechanical equilibrium with the liquid reservoir reduces the bulk modulus of the solid to zero. The shear modulus remains finite. The stability of the hyper-compressible solid is investigated in a thought experiment. A mechanical load is applied to a rectangular bar under the constraint of fixed lateral dimensions. The linear elastic modulus for axial loading is evaluated and found to be larger than zero, implying that the bar, despite the zero bulk modulus, can support a weight placed on its upper surface. The weight is stabilized by the induced shear stress. The density dependence of the shear modulus is found to be a second order effect reducing the density of the stressed solid (chemostriction).

1.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 4th ed. (
Academic Press
,
Oxford
,
2013
).
2.
M. V.
Lubarda
and
V. A.
Lubarda
,
Intermediate Solid Mechanics
(
Cambridge University Press
,
Cambridge
,
2020
).
3.
R.
Evans
, “
The nature of the liquid-vapour interface and other topics in the statistical mechanics of nonuniform, classical fluids
,”
Adv. Phys.
28
,
143
200
(
1979
).
4.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Dover Edition
,
New York
,
2002
).
5.
F. C.
Larché
and
J. W.
Cahn
, “
The interaction of composition and stress in crystalline solids
,”
Acta Metall.
33
,
331
357
(
1985
).
6.
M. E.
Gurtin
, “
Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance
,”
Physica D
92
,
178
192
(
1996
).
7.
S.
Shi
,
J.
Markmann
, and
J.
Weissmüller
, “
Verifying Larché-Cahn elasticity, a milestone of 20th-century thermodynamics
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
10914
10919
(
2018
).
8.
S.
Baek
and
A. R.
Srinivasa
, “
Diffusion of a fluid through an elastic solid undergoing large deformation
,”
Int. J. Non-Linear Mech.
39
,
201
218
(
2004
).
9.
W.
Hong
,
X.
Zhao
,
J.
Zhou
, and
Z.
Suo
, “
A theory of coupled diffusion and large deformation in polymeric gels
,”
J. Mech. Phys. Solids
56
,
1779
1793
(
2008
).
10.
F. P.
Duda
,
A. C.
Souza
, and
E.
Fried
, “
A theory for species migration in a finitely strained solid with application to polymer network swelling
,”
J. Mech. Phys. Solids
58
,
515
529
(
2010
).
11.
S. A.
Chester
and
L.
Anand
, “
A coupled theory of fluid permeation and large deformations for elastomeric materials
,”
J. Mech. Phys. Solids
58
,
1879
1906
(
2010
).
12.
L.
Anand
, “
A Cahn-Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations
,”
J. Mech. Phys. Solids
60
,
1983
2002
(
2012
).
13.
S.
Baek
and
T. J.
Pence
, “
Inhomogeneous deformation of elastomer gels in equilibrium under saturated and unsaturated conditions
,”
J. Mech. Phys. Solids
59
,
561
582
(
2011
).
14.
G. J.
Templet
and
D. J.
Steigmann
, “
On the theory of diffusion and swelling in finitely deforming elastomers
,”
Math. Mech. Complex Syst.
1
,
105
128
(
2013
).
15.
F.
Yang
, “
Interaction between diffusion and chemical stresses
,”
Mater. Sci. Eng., A
409
,
153
159
(
2005
).
16.
Z.
Cui
,
F.
Gao
, and
J.
Qu
, “
A finite deformation stress dependent chemical potential and its application to lithium ion batteries
,”
J. Mech. Phys. Solids
60
,
1280
1295
(
2012
).
17.
C. V.
Di Leo
,
E.
Rejovitzky
, and
L.
Anand
, “
A Cahn-Hilliard type phase-field theory for species diffusion coupled with large elastic deformations: Application to phase-separating Li-ion electrode materials
,”
J. Mech. Phys. Solids
70
,
1
29
(
2014
).
18.
F. Q.
Yang
,
Y.
Li
,
B. L.
Zheng
, and
K.
Zhang
, “
Interaction between stress and diffusion in lithium-ion batteries: Analysis of diffusion-induced buckling of nanowires
,” in
Handbook of Mechanics and Materials
, edited by
C. H.
Hsueh
(
Springer Nature Singapore
,
2018
), pp.
1
20
.
19.
M. E.
Gurtin
,
E.
Fried
, and
L.
Anand
,
The Mechanics and Thermodynamics of Continua
(
Cambridge University Press
,
Cambridge
,
2010
).
20.
A.
Kovetz
,
Electromagnetic Theory
(
Oxford University Press
,
Oxford
,
2000
).
21.
M.
Doi
, “
Onsager principle in polymer dynamics
,”
Prog. Polym. Sci.
112
,
101339
(
2021
).
22.
P.
Podio-Guidugli
, “
A virtual power format for thermomechanics
,”
Continuum Mech. Thermodyn.
20
,
479
487
(
2009
).
23.
M.
Sprik
, “
Electric-field-based Poisson-Boltzmann theory: Treating mobile charge as polarization
,”
Phys. Rev. E
103
,
022803
(
2021
).
24.
R. W.
Ogden
,
Non-Linear Elastic Deformations
(
Oxford University Press, Dover Publications
,
1997
).
25.
M.
Sprik
, “
Continuum model of the simple dielectric fluid: Consistency between density based and continuum mechanics methods
,”
Mol. Phys.
119
,
e1887950
(
2021
).
26.
P. C.
Martin
,
O.
Parodi
, and
P. S.
Pershan
, “
Unified hydrodynamic theory for crystals, liquid crystals and normal fluids
,”
Phys. Rev. A
6
,
2401
2420
(
1972
).
27.
P. D.
Fleming
 III
and
C.
Cohen
, “
Hydrodynamics of solids
,”
Phys. Rev. B
13
,
500
516
(
1976
).
28.
P. M.
Chaikin
and
T. C.
Lubensky
,
Principles of Condensed Matter Physics
(
Cambridge University Press
,
Cambridge
,
1995
).
29.
A.
Skaugen
,
L.
Angheluta
, and
J.
Viñals
, “
Dislocation dynamics and crystal plasticity in the phase-field crystal model
,”
Phys. Rev. B
97
,
054113
(
2018
).
30.
A.
Acharya
and
J.
Viñals
, “
Field dislocation mechanics and phase field crystal models
,”
Phys. Rev. B
102
,
064109
(
2020
).
31.
K. R.
Elder
and
M.
Grant
, “
Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals
,”
Phys. Rev. E
70
,
051605
(
2004
).
32.
K. R.
Elder
,
N.
Provatas
,
J.
Berry
,
P.
Stefanovic
, and
M.
Grant
, “
Phase-field crystal modeling and classical density functional theory of freezing
,”
Phys. Rev. B
75
,
064107
(
2007
).
33.
H.
Emmerich
,
H.
Löwen
,
R.
Wittkowski
,
T.
Gruhn
,
G. I.
Tóth
,
G.
Tegze
, and
L.
Gránásy
, “
Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: An overview
,”
Adv. Phys.
61
,
665
743
(
2012
).
34.
N.
Pisutha-Arnond
,
V. W. L.
Chan
,
K. R.
Elder
, and
K.
Thornton
, “
Calculations of isothermal elastic constants in the phase-field crystal model
,”
Phys. Rev. B
87
,
014103
(
2013
).
35.
M.
Salvalaglio
,
A.
Voigt
, and
K. R.
Elder
, “
Closing the gap between atomic-scale lattice deformations and continuum elasticity
,”
npj Comput. Mater.
5
,
48
(
2019
).
36.
L. A.
Pozhar
,
K. E.
Gubbins
, and
J. K.
Percus
, “
Generalized compressibility equation for inhomogeneous fluids at equilibrium
,”
Phys. Rev. E
48
,
1819
1822
(
1993
).
37.
V.
Romero-Rochín
and
J. K.
Percus
, “
Stress tensor of liquid-vapor states of inhomogeneous fluids
,”
Phys. Rev. E
53
,
5130
5136
(
1996
).
38.
R.
Lovett
and
M.
Baus
, “
Two molecular scale force distributions associated with a planar interface
,”
J. Chem. Phys.
97
,
8596
8605
(
1992
).
39.
R.
Lovett
and
M.
Baus
, “
The thermodynamic forces in an interface
,”
Adv. Chem. Phys.
102
,
1
38
(
1997
).
40.
C.
Walz
and
M.
Fuchs
, “
Displacement field and elastic constants in nonideal crystals
,”
Phys. Rev. B
81
,
134110
(
2010
).
41.
J. M.
Häring
,
C.
Walz
,
G.
Szamel
, and
M.
Fuchs
, “
Coarse-grained density and compressibility of nonideal crystals: General theory and an application to cluster crystals
,”
Phys. Rev. B
92
,
184103
(
2015
).
42.
A.
DiCarlo
and
P.
Podio-Guidugli
, “
From point particles to body points
,”
Math. Eng.
4
,
1
29
(
2022
).
43.
B. D.
Coleman
and
W.
Noll
, “
The thermodynamics of elastic materials with heat conduction and viscosity
,”
Arch. Ration. Mech. Anal.
13
,
167
178
(
1963
).
44.
M.
Doi
,
Soft Matter Physics
(
Oxford University Press
,
Oxford
,
2013
).
45.
J. H.
Weijs
,
B.
Andreotti
, and
J. H.
Snoeijer
, “
Elasto-capillarity at the nanoscale: On the coupling between elasticity and surface energy in soft solids
,”
Soft Matter
9
,
8494
8503
(
2013
).
46.
R. W.
Style
,
A.
Jagota
,
C.-Y.
Hui
, and
E. R.
Dufresne
, “
Elastocapillarity: Surface tension and the mechanics of soft solids
,”
Annu. Rev. Condens. Matter Phys.
8
,
99
118
(
2017
).
47.
R. W.
Style
and
Q.
Xu
, “
The mechanical equilibrium of soft solids with surface elasticity
,”
Soft Matter
14
,
4569
4576
(
2018
).
48.
A.
Cacciuto
,
S.
Auer
, and
D.
Frenkel
, “
Breakdown of classical nucleation theory near isostructural phase transitions
,”
Phys. Rev. Lett.
93
,
166105
(
2004
).
49.
B.
Cheng
and
M.
Ceriotti
, “
Bridging the gap between atomistic and macroscopic models of homogeneous nucleation
,”
J. Chem. Phys.
146
,
034106
(
2017
).
50.
P.
Montero de Hijes
,
K.
Shi
,
E. G.
Noya
,
E. E.
Santiso
,
K. E.
Gubbins
,
E.
Sanz
, and
C.
Vega
, “
The Young-Laplace equation for a solid-liquid interfaces
,”
J. Chem. Phys.
153
,
191102
(
2020
).
51.
J. F.
Lutsko
, “
How crystals form: A theory of nucleation pathways
,”
Sci. Adv.
5
,
eaav7399
(
2019
).
52.
K. E.
Gubbins
,
Y.
Long
, and
M.
Śliwinska-Bartkowiak
, “
Thermodynamics of confined nano-phases
,”
J. Chem. Thermodyn.
74
,
169
183
(
2014
).
53.
E.
Fried
and
M. E.
Gurtin
, “
Coherent solid-state phase transitions with atomic diffusion: A thermomechanical treatment
,”
J. Stat. Phys.
95
,
1361
1427
(
1999
).
54.
D. M.
Anderson
,
G. B.
McFadden
, and
A. A.
Wheeler
, “
Diffuse interface methods in fluid mechanics
,”
Annu. Rev. Fluid Mech.
30
,
139
165
(
1998
).
55.
V. A.
Eremeyev
and
H.
Altenbach
, “
Equilibrium of a second-gradient fluid and an elastic solid with surface stresses
,”
Meccanica
49
,
2635
2643
(
2014
).
56.
M.
Oettel
,
S.
Görig
,
A.
Härtel
,
H.
Löwen
,
M.
Radu
, and
T.
Schilling
, “
Free energies, vacancy concentrations, and density distribution anisotropies in hard-sphere crystals: A combined density functional and simulation study
,”
Phys. Rev. E
82
,
051404
(
2010
).
57.
J. F.
Lutsko
and
C.
Schoonen
, “
Classical density-functional theory applied to the solid state
,”
Phys. Rev. E
102
,
062136
(
2020
).
58.
M. Z.
Bazant
,
B. D.
Storey
, and
A. A.
Kornyshev
, “
Double layer in ionic liquids: Overscreening versus crowding
,”
Phys. Rev. Lett.
106
,
046102
(
2011
).
59.
A. C.
Maggs
and
R.
Podgornik
, “
General theory of asymmetric steric interactions in electrostatic double layers
,”
Soft Matter
12
,
1219
1229
(
2016
).
60.
J. P.
de Souza
and
M. Z.
Bazant
, “
Continuum theory of electrostatic correlations at charged surfaces
,”
J. Phys. Chem. C
124
,
11414
11421
(
2020
).
61.
C. S.
Perez-Martinez
and
S.
Perkin
, “
Surface forces generated by the action of electric fields across liquid films
,”
Soft Matter
15
,
4255
4265
(
2019
).
You do not currently have access to this content.