Synchrotron x-ray scattering has been used to investigate three liquid polyalcohols of different sizes (glycerol, xylitol, and D-sorbitol) from above the glass transition temperatures Tg to below. We focus on two structural orders: the association of the polar OH groups by hydrogen bonds (HBs) and the packing of the non-polar hydrocarbon groups. We find that the two structural orders evolve very differently, reflecting the different natures of bonding. Upon cooling from 400 K, the O⋯O correlation at 2.8 Å increases significantly in all three systems, indicating more HBs, until kinetic arrests at Tg; the increase is well described by an equilibrium between bonded and non-bonded OH with ΔH = 9.1 kJ/mol and ΔS = 13.4 J/mol/K. When heated above Tg, glycerol loses the fewest HBs per OH for a given temperature rise scaled by Tg, followed by xylitol and by D-sorbitol, in the same order the number of OH groups per molecule increases (3, 5, and 6). The pair correlation functions of all three liquids show exponentially damped density modulations of wavelength 4.5 Å, which are associated with the main scattering peak and with the intermolecular C⋯C correlation. In this respect, glycerol is the most ordered with the most persistent density ripples, followed by D-sorbitol and by xylitol. Heating above Tg causes faster damping of the density ripples with the rate of change being the slowest in xylitol, followed by glycerol and by D-sorbitol. Given the different dynamic fragility of the three liquids (glycerol being the strongest and D-sorbitol being the most fragile), we relate our results to the current theories of the structural origin for the difference. We find that the fragility difference is better understood on the basis of the thermal stability of HB clusters than that of the structure associated with the main scattering peak.

1.
G. W.
Stewart
and
R. M.
Morrow
, “
X-ray diffraction in liquids: Primary normal alcohols
,”
Phys. Rev.
30
(
3
),
232
244
(
1927
).
2.
B. E.
Warren
, “
The diffraction of X-rays in glass
,”
Phys. Rev.
45
(
10
),
657
661
(
1934
).
3.
J. L.
Yarnell
,
M. J.
Katz
,
R. G.
Wenzel
, and
S. H.
Koenig
, “
Structure factor and radial distribution function for liquid argon at 85 K
,”
Phys. Rev. A
7
(
6
),
2130
2144
(
1973
).
4.
W. L.
Jorgensen
, “
Optimized intermolecular potential functions for liquid alcohols
,”
J. Phys. Chem.
90
,
1276
1284
(
1986
).
5.
L. B.
Skinner
,
C.
Huang
,
D.
Schlesinger
,
L. G. M.
Pettersson
,
A.
Nilsson
, and
C. J.
Benmore
, “
Benchmark oxygen-oxygen pair-distribution function of ambient water from X-ray diffraction measurements with a wide Q-range
,”
J. Chem. Phys.
138
(
7
),
074506
(
2013
).
6.
N. W.
Ashcroft
and
J.
Lekner
, “
Structure and resistivity of liquid metals
,”
Phys. Rev.
145
(
1
),
83
90
(
1966
).
7.
M.
Nakanishi
and
R.
Nozaki
, “
Systematic study of the glass transition in polyhydric alcohols
,”
Phys. Rev. E
83
(
5
),
051503
(
2011
).
8.
N. A.
Mauro
,
M.
Blodgett
,
M. L.
Johnson
,
A. J.
Vogt
, and
K. F.
Kelton
, “
Structural signature of liquid fragility
,”
Nat. Commun.
5
(
1
),
4616
(
2014
).
9.
P. S.
Salmon
and
A.
Zeidler
, “
Identifying and characterising the different structural length scales in liquids and glasses: An experimental approach
,”
Phys. Chem. Chem. Phys.
15
(
37
),
15286
15308
(
2013
).
10.
D. N.
Voylov
,
P. J.
Griffin
,
B.
Mercado
,
J. K.
Keum
,
M.
Nakanishi
,
V. N.
Novikov
, and
A. P.
Sokolov
, “
Correlation between temperature variations of static and dynamic properties in glass-forming liquids
,”
Phys. Rev. E
94
(
6
),
060603
(
2016
).
11.
C. W.
Ryu
and
T.
Egami
, “
Origin of liquid fragility
,”
Phys. Rev. E
102
(
4
),
042615
(
2020
).
12.
C. J.
Benmore
, in
Modern Glass Characterization
, X‐Ray Diffraction from Glass, edited by
M.
Affatigato
(
Wiley-VCH
,
2015
), pp.
1
30
.
13.
A. H.
Narten
and
A.
Habenschuss
, “
Hydrogen bonding in liquid methanol and ethanol determined by X‐ray diffraction
,”
J. Chem. Phys.
80
(
7
),
3387
3391
(
1984
).
14.
T.
Takamuku
,
H.
Maruyama
,
S.
Kittaka
,
S.
Takahara
, and
T.
Yamaguchi
, “
Structure of methanol confined in MCM-41 investigated by large-angle X-ray scattering technique
,”
J. Phys. Chem. B
109
(
2
),
892
899
(
2005
).
15.
K. S.
Vahvaselkä
,
R.
Serimaa
, and
M.
Torkkeli
, “
Determination of liquid structures of the primary alcohols methanol, ethanol, 1-propanol, 1-butanol and 1-octanol by X-ray scattering
,”
J. Appl. Crystallogr.
28
,
189
195
(
1995
).
16.
M.
Požar
,
J.
Bolle
,
C.
Sternemann
, and
A.
Perera
, “
On the X-ray scattering pre-peak of linear mono-ols and the related microstructure from computer simulations
,”
J. Phys. Chem. B
124
,
8358
8371
(
2020
).
17.
R.
Roland Böhmer
,
C.
Gainaru
, and
R.
Richert
, “
Structure and dynamics of monohydroxy alcohols—Milestones towards their microscopic understanding, 100 years after Debye
,”
Phys. Rep.
545
,
125
195
(
2014
).
18.
P.
Sillrén
,
A.
Matic
,
M.
Karlsson
,
M.
Koza
,
M.
Maccarini
,
P.
Fouquet
,
M.
Götz
,
T.
Bauer
,
R.
Gulich
,
P.
Lunkenheimer
,
A.
Loidl
,
J.
Mattsson
,
C.
Gainaru
,
E.
Vynokur
,
S.
Schildmann
,
S.
Bauer
, and
R.
Böhmer
, “
Liquid 1-propanol studied by neutron scattering, near-infrared, and dielectric spectroscopy
,”
J. Chem. Phys.
140
(
12
),
124501
(
2014
).
19.
S.
Pawlus
,
A.
Grzybowski
,
M.
Paluch
, and
P.
Wlodarczyk
, “
Role of hydrogen bonds and molecular structure in relaxation dynamics of pentiol isomers
,”
Phys. Rev. E
85
(
5
),
052501
(
2012
).
20.
M.
Soltwisch
and
B.
Steffen
, “
The X-ray structure factor of liquid glycerol
,”
Z. Naturforsch., A
36
(
10
),
1045
1051
(
1981
).
21.
D. C.
Champeney
,
R. N.
Joarder
, and
J. C.
Dore
, “
Structural studies of liquid D-glycerol by neutron diffraction
,”
Mol. Phys.
58
(
2
),
337
347
(
1986
).
22.
J. J.
Towey
,
A. K.
Soper
, and
L.
Dougan
, “
The structure of glycerol in the liquid state: A neutron diffraction study
,”
Phys. Chem. Chem. Phys.
13
(
20
),
9397
(
2011
).
23.
C. S.
Callam
,
S. J.
Singer
,
T. L.
Lowary
, and
C. M.
Hadad
, “
Computational analysis of the potential energy surfaces of glycerol in the gas and aqueous phases: Effects of level of theory, basis set, and solvation on strongly intramolecularly hydrogen-bonded systems
,”
J. Am. Chem. Soc.
123
(
47
),
11743
11754
(
2001
).
24.
L. J.
Root
and
F. H.
Stillinger
, “
Short‐range order in glycerol. A molecular dynamics study
,”
J. Chem. Phys.
90
(
2
),
1200
1208
(
1989
).
25.
R.
Chelli
,
P.
Procacci
,
G.
Cardini
, and
S.
Califano
, “
Glycerol condensed phases Part II A molecular dynamics study of the conformational structure and hydrogen bonding
,”
Phys. Chem. Chem. Phys.
1
(
5
),
879
885
(
1999
).
26.
D. A.
Jahn
,
F. O.
Akinkunmi
, and
N.
Giovambattista
, “
Effects of temperature on the properties of glycerol: A computer simulation study of five different force fields
,”
J. Phys. Chem. B
118
(
38
),
11284
11294
(
2014
).
27.
L. J.
Root
and
B. J.
Berne
, “
Effect of pressure on hydrogen bonding in glycerol: A molecular dynamics investigation
,”
J. Chem. Phys.
107
(
11
),
4350
4357
(
1997
).
28.
A. F.
Jones
and
D. L.
Misell
, “
A practical method for the deconvolution of experimental curves
,”
Br. J. Appl. Phys.
18
(
10
),
1479
1483
(
1967
).
29.
G.
Leonard
,
J.
McCarthy
,
D.
Nurizzo
, and
X.
Thibault
, “
Technical report: Automatic experiments at the European synchrotron radiation facility MX beam-lines
,”
Synchrotron Radiat. News
20
(
3
),
18
24
(
2007
).
30.
A.
Hammersley
,
S.
Svensson
,
M.
Hanfland
,
A.
Fitch
, and
D.
Hausermann
, “
Two-dimensional detector software: From real detector to idealised image or two-theta scan
,”
High Pres. Res.
14
(
4–6
),
235
248
(
1996
).
31.
X.
Qiu
,
J. W.
Thompson
, and
S. J. L.
Billinge
, “
PDFgetX2: A GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data
,”
J. Appl. Crystallogr.
37
(
4
),
678
(
2004
).
32.
P.
Gaskell
, “
Medium-range structure in glasses and low-Q structure in neutron and X-ray scattering data
,”
J. Non-Cryst. Solids
351
(
12–13
),
1003
1013
(
2005
).
33.
D.
Pickup
,
R.
Moss
, and
R.
Newport
, “
NXFit: A program for simultaneously fitting X-ray and neutron diffraction pair-distribution functions to provide optimized structural parameters
,”
J. Appl. Crystallogr.
47
(
5
),
1790
1796
(
2014
).
34.
G.
Etherington
,
A.
Wright
,
J.
Wenzel
,
J.
Dore
,
J.
Clarke
, and
R.
Sinclair
, “
A neutron diffraction study of the structure of evaporated amorphous germanium
,”
J. Non-Cryst. Solids
48
(
2–3
),
265
289
(
1982
).
35.
R. L.
Leheny
,
N.
Menon
,
S. R.
Nagel
,
D.
Long Price
,
K.
Suzuya
, and
P.
Thiyagarajan
, “
Structural studies of an organic liquid through the glass transition
,”
J. Chem. Phys.
105
(
17
),
7783
7794
(
1996
).
36.
E.
Eckstein
,
J.
Qian
,
R.
Hentschke
,
T.
Thurn-Albrecht
,
W.
Steffen
, and
E. W.
Fischer
, “
X-ray scattering study and molecular simulation of glass forming liquids: Propylene carbonate and salol
,”
J. Chem. Phys.
113
(
11
),
4751
4762
(
2000
).
37.
M. S.
Wertheim
, “
Exact solution of the Percus–Yevick integral equation for hard spheres
,”
Phys. Rev. Lett.
10
(
8
),
321
323
(
1963
).
38.
P.
Perry
and
G. J.
Throop
, “
Decay of pair correlations in hard sphere fluids
,”
J. Chem. Phys.
57
(
5
),
1827
1829
(
1972
).
39.
T.
Kusukawa
,
G.
Niwa
,
T.
Sasaki
,
R.
Oosawa
,
W.
Himeno
, and
M.
Kato
, “
Observation of a hydrogen-bonded 3D structure of crystalline glycerol
,”
Bull. Chem. Soc. Jpn.
86
(
3
),
351
353
(
2013
).
40.
H. S.
Kim
and
G. A.
Jeffrey
, “
The crystal structure of xylitol
,”
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
25
(
12
),
2607
2613
(
1969
).
41.
Y. J.
Park
,
G. A.
Jeffrey
, and
W. C.
Hamilton
, “
Determination of the crystal structure of the A form of D-glucitol by neutron and X-ray diffraction
,”
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
27
(
12
),
2393
2401
(
1971
).
42.
L. B.
Skinner
,
C. J.
Benmore
,
J. C.
Neuefeind
, and
J. B.
Parise
, “
The structure of water around the compressibility minimum
,”
J. Chem. Phys.
141
(
21
),
214507
(
2014
).
43.
R.
Chelli
,
P.
Procacci
,
G.
Cardini
,
R. G.
Della Valle
, and
S.
Califano
, “
Glycerol condensed phases Part I. A molecular dynamics study
,”
Phys. Chem. Chem. Phys.
1
(
5
),
871
877
(
1999
).
44.
P. J.
Brown
,
A. G.
Fox
,
E. N.
Maslen
,
M. A.
O'Keefe
, and
B. T. M.
Willis
, in
International Tables for Crystallography
(
John Wiley & Sons, Ltd.
,
2006
), Vol. C, Chap. 6.1, pp.
554
595
.
45.
M.
Nakanishi
and
R.
Nozaki
, “
Model of the cooperative rearranging region for polyhydric alcohols
,”
Phys. Rev. E
84
(
1
),
011503
(
2011
).
46.
G. E.
Walrafen
,
M. R.
Fisher
,
M. S.
Hokmabadi
, and
W. H.
Yang
, “
Temperature dependence of the low- and high-frequency Raman scattering from liquid water
,”
J. Chem. Phys.
85
,
6970
(
1986
).
47.
R.
Evans
,
R. J. F.
Leote de Carvalho
,
J. R.
Henderson
, and
D. C.
Hoyle
, “
Asymptotic decay of correlations in liquids and their mixtures
,”
J. Chem. Phys.
100
(
1
),
591
603
(
1994
).
48.
V. I.
Korsunsky
and
Y. I.
Naberukhin
, “
An analytical method of computation of radial distribution functions at large distances for liquids and amorphous substances
,”
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.
36
(
1
),
33
39
(
1980
).
49.
L.
Zoranić
,
F.
Sokolić
, and
A.
Perera
, “
Microstructure of neat alcohols: A molecular dynamics study
,”
J. Chem. Phys.
127
,
024502
(
2007
).
50.
A.
Statt
,
R.
Pinchaipat
,
F.
Turci
,
R.
Evans
, and
C. P.
Royall
, “
Direct observation in 3D of structural crossover in binary hard sphere mixtures
,”
J. Chem. Phys.
144
,
144506
(
2016
).
51.
Y.
Zhou
,
B.
Mei
, and
K. S.
Schweizer
, “
Integral equation theory of thermodynamics, pair structure, and growing static length scale in metastable hard sphere and Weeks–Chandler–Andersen fluids
,”
Phys. Rev. E
101
,
042121
(
2021
).
52.
Z.
Zhang
and
W.
Kob
, “
Revealing the three-dimensional structure of liquids using four-point correlation functions
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
14032
14037
(
2020
).
53.
G. D.
Scott
and
D. M.
Kilgour
, “
The density of random close packing of spheres
,”
J. Phys. D: Appl. Phys.
2
(
6
),
863
866
(
1969
).
54.
C. A.
Angell
, “
Formation of glasses from liquids and biopolymers
,”
Science
267
(
5206
),
1924
1935
(
1995
).
55.
Y.
Chen
,
W.
Zhang
, and
L.
Yu
, “
Hydrogen bonding slows down surface diffusion of molecular glasses
,”
J. Phys. Chem. B
120
(
32
),
8007
8015
(
2016
).
56.
C. P.
Royall
,
A.
Malins
,
A. J.
Dunleavy
, and
R.
Pinney
, “
Strong geometric frustration in model glass formers
,”
J. Non-Cryst. Solids
407
,
34
43
(
2015
).
57.
S.
Albert
,
T.
Bauer
,
M.
Michl
,
G.
Biroli
,
J.-P.
Bouchaud
,
A.
Loidl
,
P.
Lunkenheimer
,
R.
Tourbot
,
C.
Wiertel-Gasquet
, and
F.
Ladieu
, “
Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers
,”
Science
352
(
6291
),
1308
1311
(
2016
).
58.
G.
Biroli
,
J.-P.
Bouchaud
,
A.
Cavagna
,
T. S.
Grigera
, and
P.
Verrocchio
, “
Thermodynamic signature of growing amorphous order in glass-forming liquids
,”
Nat. Phys.
4
(
10
),
771
775
(
2008
).

Supplementary Material

You do not currently have access to this content.