Small systems have higher surface area-to-volume ratios than macroscopic systems. The thermodynamics of small systems therefore deviates from the description of classical thermodynamics. One consequence of this is that properties of small systems can be dependent on the system’s ensemble. By comparing the properties in grand canonical (open) and canonical (closed) systems, we investigate how a small number of particles can induce an ensemble dependence. Emphasis is placed on the insight that can be gained by investigating ideal gases. The ensemble equivalence of small ideal gas systems is investigated by deriving the properties analytically, while the ensemble equivalence of small systems with particles interacting via the Lennard-Jones or the Weeks–Chandler–Andersen potential is investigated through Monte Carlo simulations. For all the investigated small systems, we find clear differences between the properties in open and closed systems. For systems with interacting particles, the difference between the pressure contribution to the internal energy, and the difference between the chemical potential contribution to the internal energy, are both increasing with the number density. The difference in chemical potential is, with the exception of the density dependence, qualitatively described by the analytic formula derived for an ideal gas system. The difference in pressure, however, is not captured by the ideal gas model. For the difference between the properties in the open and closed systems, the response of increasing the particles’ excluded volume is similar to the response of increasing the repulsive forces on the system walls. This indicates that the magnitude of the difference between the properties in open and closed systems is related to the restricted movement of the particles in the system. The work presented in this paper gives insight into the mechanisms behind ensemble in-equivalence in small systems, and illustrates how a simple statistical mechanical model, such as the ideal gas, can be a useful tool in these investigations.

1.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
, 2nd ed. (
Academic Press
,
2002
).
2.
I.
Oppenheim
and
P.
Mazur
, “
Density expansions of distribution functions. I.: Virial expansion for finite closed systems: Canonical esemble
,”
Physica
23
,
197
215
(
1957
).
3.
J. L.
Lebowitz
and
J. K.
Percus
, “
Long-range correlations in a closed system with applications to nonuniform fluids
,”
Phys. Rev.
122
,
1675
1691
(
1961
).
4.
J. L.
Lebowitz
and
J. K.
Percus
, “
Thermodynamic properties of small systems
,”
Phys. Rev.
124
,
1673
1681
(
1961
).
5.
J. I.
Siepmann
,
I. R.
McDonald
, and
D.
Frenkel
, “
Finite-size corrections to the chemical potential
,”
J. Phys.: Condens. Matter
4
,
679
691
(
1992
).
6.
P.
Krüger
,
S. K.
Schnell
,
D.
Bedeaux
,
S.
Kjelstrup
,
T. J. H.
Vlugt
, and
J.-M.
Simon
, “
Kirkwood–Buff integrals for finite volumes
,”
J. Phys. Chem. Lett.
4
,
235
238
(
2013
).
7.
J.
Milzetti
,
D.
Nayar
, and
N. F. A.
van der Vegt
, “
Convergence of Kirkwood–Buff integrals of ideal and nonideal aqueous solutions using molecular dynamics simulations
,”
J. Phys. Chem. B
122
,
5515
5526
(
2018
).
8.
N.
Dawass
,
P.
Krüger
,
S. K.
Schnell
,
J.-M.
Simon
, and
T. J. H.
Vlugt
, “
Kirkwood-Buff integrals from molecular simulation
,”
Fluid Phase Equilib.
486
,
21
36
(
2019
).
9.
W. W.
Wood
,
F. R.
Parker
, and
J. D.
Jacobson
, “
Recent Monte Carlo calculations of the equation of state of Lenard-Jones and hard sphere molecules
,”
Nuovo Cimento
9
,
133
143
(
1958
).
10.
B. J.
Alder
and
T. E.
Wainwright
, “
Studies in molecular dynamics. II. Behavior of a small number of elastic spheres
,”
J. Chem. Phys.
33
,
1439
1451
(
1960
).
11.
K.
Binder
, “
Finite size scaling analysis of ising model block distribution functions
,”
Z. Phys. B: Condens. Matter
43
,
119
140
(
1981
).
12.
M.
Rovere
,
P.
Nielaba
, and
K.
Binder
, “
Simulation studies of gas-liquid transitions in two dimensions via a subsystem-block-density distribution analysis
,”
Z. Phys. B: Condens. Matter
90
,
215
228
(
1993
).
13.
S. K.
Schnell
,
T. J. H.
Vlugt
,
J.-M.
Simon
,
D.
Bedeaux
, and
S.
Kjelstrup
, “
Thermodynamics of a small system in a μT reservoir
,”
Chem. Phys. Lett.
504
,
199
201
(
2011
).
14.
S. K.
Schnell
,
T. J. H.
Vlugt
,
J.-M.
Simon
,
D.
Bedeaux
, and
S.
Kjelstrup
, “
Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects
,”
Mol. Phys.
110
,
1069
1079
(
2012
).
15.
P.
Ganguly
and
N. F. A.
van der Vegt
, “
Convergence of sampling Kirkwood–Buff integrals of aqueous solutions with molecular dynamics simulations
,”
J. Chem. Theory Comput.
9
,
1347
1355
(
2013
).
16.
R.
Cortes-Huerto
,
K.
Kremer
, and
R.
Potestio
, “
Communication: Kirkwood-Buff integrals in the thermodynamic limit from small-sized molecular dynamics simulations
,”
J. Chem. Phys.
145
,
141103
(
2016
).
17.
M.
Heidari
,
K.
Kremer
,
R.
Potestio
, and
R.
Cortes-Huerto
, “
Fluctuations, finite-size effects and the thermodynamic limit in computer simulations: Revisiting the spatial block analysis method
,”
Entropy
20
,
222
(
2018
).
18.
M.
Heidari
,
K.
Kremer
,
R.
Potestio
, and
R.
Cortes-Huerto
, “
Finite-size integral equations in the theory of liquids and the thermodynamic limit in computer simulations
,”
Mol. Phys.
116
,
3301
3310
(
2018
).
19.
B. A.
Strøm
,
J.-M.
Simon
,
S. K.
Schnell
,
S.
Kjelstrup
,
J.
He
, and
D.
Bedeaux
, “
Size and shape effects on the thermodynamic properties of nanoscale volumes of water
,”
Phys. Chem. Chem. Phys.
19
,
9016
9027
(
2017
).
20.
V.
Bråten
,
Ø.
Wilhelmsen
, and
S. K.
Schnell
, “
Chemical potential differences in the macroscopic limit from fluctuations in small systems
,”
J. Chem. Inf. Model.
61
,
840
855
(
2021
).
21.
W. H.
Roos
,
I. L.
Ivanovska
,
A.
Evilevitch
, and
G. J. L.
Wuite
, “
Viral capsids: Mechanical characteristics, genome packaging and delivery mechanisms
,”
Cell. Mol. Life Sci.
64
,
1484
(
2007
).
22.
N. P.
Stone
,
G.
Demo
,
E.
Agnello
, and
B. A.
Kelch
, “
Principles for enhancing virus capsid capacity and stability from a thermophilic virus capsid structure
,”
Nat. Commun.
10
,
4471
(
2019
).
23.
M.
Kulmala
,
H.
Vehkamäki
,
T.
Petäjä
,
M.
Dal Maso
,
A.
Lauri
,
V. M.
Kerminen
,
W.
Birmili
, and
P. H.
McMurry
, “
Formation and growth rates of ultrafine atmospheric particles: A review of observations
,”
J. Aerosol Sci.
35
,
143
176
(
2004
).
24.
H.
Singh
and
R. S.
Myong
, “
Critical review of fluid flow physics at micro- to nano-scale porous media applications in the energy sector
,”
Adv. Mater. Sci. Eng.
2018
,
9565240
.
25.
P.
Sudarsanam
,
E.
Peeters
,
E. V.
Makshina
,
V. I.
Parvulescu
, and
B. F.
Sels
, “
Advances in porous and nanoscale catalysts for viable biomass conversion
,”
Chem. Soc. Rev.
48
,
2366
2421
(
2019
).
26.
T. L.
Hill
, “
Thermodynamics of small systems
,”
J. Chem. Phys.
36
,
3182
3197
(
1962
).
27.
O.
Galteland
,
D.
Bedeaux
,
B.
Hafskjold
, and
S.
Kjelstrup
, “
Pressures inside a nano-porous medium. The case of a single phase fluid
,”
Front. Phys.
7
,
60
(
2019
).
28.
M. T.
Rauter
,
O.
Galteland
,
M.
Erdős
,
O. A.
Moultos
,
T. J. H.
Vlugt
,
S. K.
Schnell
,
D.
Bedeaux
, and
S.
Kjelstrup
, “
Two-phase equilibrium conditions in nanopores
,”
Nanomaterials
10
,
608
(
2020
).
29.
E.
Bering
,
S.
Kjelstrup
,
D.
Bedeaux
,
J. M.
Rubi
, and
A. S.
de Wijn
, “
Entropy production beyond the thermodynamic limit from single-molecule stretching simulations
,”
J. Phys. Chem. B
124
,
8909
8917
(
2020
).
30.
E.
Bering
,
D.
Bedeaux
,
S.
Kjelstrup
,
A. S.
de Wijn
,
I.
Latella
, and
J. M.
Rubi
, “
A Legendre-Fenchel transform for molecular stretching energies
,”
Nanomaterials
10
,
2355
(
2020
).
31.
A.
Campa
,
T.
Dauxois
, and
S.
Ruffo
, “
Statistical mechanics and dynamics of solvable models with long-range interactions
,”
Phys. Rep.
480
,
57
159
(
2009
).
32.
D. F. A.
Campa
,
T.
Dauxois
, and
S.
Ruffo
,
Physics of Long-Range Interacting Systems
(
Oxford University Press
,
2014
).
33.
J. M.
Rubi
,
D.
Bedeaux
, and
S.
Kjelstrup
, “
Thermodynamics for single-molecule stretching experiments
,”
J. Phys. Chem. B
110
,
12733
12737
(
2006
).
34.
H.
Touchette
,
R. S.
Ellis
, and
B.
Turkington
, “
An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles
,”
Physica A
340
,
138
146
(
2004
).
35.
H.
Touchette
, “
Ensemble equivalence for general many-body systems
,”
Europhys. Lett.
96
,
50010
(
2011
).
36.
A.
Campa
,
L.
Casetti
,
I.
Latella
,
A.
Pérez-Madrid
, and
S.
Ruffo
, “
Concavity, response functions and replica energy
,”
Entropy
20
,
907
(
2018
).
37.
F. L.
Román
,
A.
González
,
J. A.
White
, and
S.
Velasco
, “
Fluctuations in the number of particles of the ideal gas: A simple example of explicit finite-size effects
,”
Am. J. Phys.
67
,
1149
1151
(
1999
).
38.
D.
Villamaina
and
E.
Trizac
, “
Thinking outside the box: Fluctuations and finite size effects
,”
Eur. J. Phys.
35
,
035011
(
2014
).
39.
M. E.
Tuckerman
,
Statistical Mechanics: Theory and Molecular Simulation
(
Oxford University Press, Inc.
,
New York
,
2010
).
40.
R. B.
Shirts
,
S. R.
Burt
, and
A. M.
Johnson
, “
Periodic boundary condition induced breakdown of the equipartition principle and other kinetic effects of finite sample size in classical hard-sphere molecular dynamics simulation
,”
J. Chem. Phys.
125
,
164102
(
2006
).
41.
M. J.
Uline
,
D. W.
Siderius
, and
D. S.
Corti
, “
On the generalized equipartition theorem in molecular dynamics ensembles and the microcanonical thermodynamics of small systems
,”
J. Chem. Phys.
128
,
124301
(
2008
).
42.
T.
Niiyama
,
Y.
Shimizu
,
T. R.
Kobayashi
,
T.
Okushima
, and
K. S.
Ikeda
, “
Effect of translational and angular momentum conservation on energy equipartition in microcanonical equilibrium in small clusters
,”
Phys. Rev. E
79
,
051101
(
2009
).
43.
E. N.
Miranda
, “
Statistical mechanics of few-particle systems: Exact results for two useful models
,”
Eur. J. Phys.
38
,
065101
(
2017
).
44.
D.
Bedeaux
,
S.
Kjelstrup
, and
S. K.
Schnell
,
Nanothermodynamics. General Theory
(
PoreLab Publisher
,
2020
).
45.
B. A.
Strøm
,
D.
Bedeaux
, and
S. K.
Schnell
, “
Adsorption of an ideal gas on a small spherical adsorbent
,”
Nanomaterials
11
,
431
(
2021
).
46.
T. L.
Hill
,
Thermodynamics of Small Systems
(
Dover Publications
,
New York
,
1994
).
47.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
, “
Role of repulsive forces in determining the equilibrium structure of simple liquids
,”
J. Chem. Phys.
54
,
5237
5247
(
1971
).
48.
B.
Widom
, “
Some topics in the theory of fluids
,”
J. Chem. Phys.
39
,
2808
2812
(
1963
).
49.
H.
Reiss
and
D.
Reguera
, “
Understanding the limitations of the virial in the simulation of nanosystems: A puzzle that stimulated the search for understanding
,”
J. Phys. Chem. B
108
,
6555
6563
(
2004
).

Supplementary Material

You do not currently have access to this content.