While density functional theory (DFT) at the generalized gradient approximation (GGA) level has made great success in catalysis, it fails in some important systems such as the adsorption of the oxygen molecule on the Ag(111) surface. Previous DFT studies at the GGA level revealed theoretical inconsistencies on the adsorption energies and dissociation barriers of O2 on Ag(111) in comparison with the experimental conclusion. In this study, the strongly constrained and appropriately normed-revised Vydrov van Voorhis van der Waals correction functional (SCAN-rVV10) method at the meta-GGA level with the nonlocal van der Waals (vdW) force correction was used to reinvestigate the adsorption properties of O2 on the Ag(111) surface. The SCAN-rVV10 results successfully confirm the experimental observation that both molecular and dissociative adsorptions can exist for oxygen on Ag(111). The calculated adsorption energy for the physisorption state and the relevant dissociation energy barrier are close to the experimental data. It demonstrates that SCAN-rVV10 can outperform functionals at the GGA level for O2/Ag(111). Therefore, our findings suggest that SCAN-rVV10 can be the desired method for systems where the correct description of intermediate-ranged vdW forces is essential, such as the physisorption of small molecules on the solid surface.

1.
A.
Jain
,
Y.
Shin
, and
K. A.
Persson
,
Nat. Rev. Mater.
1
(
1
),
15004
(
2016
).
2.
Z. W.
Seh
,
J.
Kibsgaard
,
C. F.
Dickens
,
I.
Chorkendorff
,
J. K.
Norskov
, and
T. F.
Jaramillo
,
Science
355
(
6321
),
eaad4998
(
2017
).
3.
J. K.
Norskov
,
T.
Bligaard
,
J.
Rossmeisl
, and
C. H.
Christensen
,
Nat. Chem.
1
(
1
),
37
46
(
2009
).
4.
B.
Liu
,
Y.
Wang
,
H.-Q.
Peng
,
R.
Yang
,
Z.
Jiang
,
X.
Zhou
,
C.-S.
Lee
,
H.
Zhao
, and
W.
Zhang
,
Adv. Mater.
30
(
36
),
1803144
(
2018
).
5.
Z.
Lai
,
A.
Chaturvedi
,
Y.
Wang
,
T. H.
Tran
,
X.
Liu
,
C.
Tan
,
Z.
Luo
,
B.
Chen
,
Y.
Huang
,
G.-H.
Nam
,
Z.
Zhang
,
Y.
Chen
,
Z.
Hu
,
B.
Li
,
S.
Xi
,
Q.
Zhang
,
Y.
Zong
,
L.
Gu
,
C.
Kloc
,
Y.
Du
, and
H.
Zhang
,
J. Am. Chem. Soc.
140
(
27
),
8563
8568
(
2018
).
6.
S.
Zhao
,
Y.
Wang
,
J.
Dong
,
C.-T.
He
,
H.
Yin
,
P.
An
,
K.
Zhao
,
X.
Zhang
,
C.
Gao
,
L.
Zhang
,
J.
Lv
,
J.
Wang
,
J.
Zhang
,
A. M.
Khattak
,
N. A.
Khan
,
Z.
Wei
,
J.
Zhang
,
S.
Liu
,
H.
Zhao
, and
Z.
Tang
,
Nat. Energy
1
,
16184
(
2016
).
7.
S.
Chu
and
A.
Majumdar
,
Nature
488
(
7411
),
294
303
(
2012
).
8.
N.
Zhang
,
F.
Chen
,
D.
Liu
, and
Z.
Xia
,
ACS Appl. Energy Mater.
1
(
8
),
4385
4394
(
2018
).
9.
R.
Ma
,
G.
Lin
,
Y.
Zhou
,
Q.
Liu
,
T.
Zhang
,
G.
Shan
,
M.
Yang
, and
J.
Wang
,
npj Comput. Mater.
5
(
1
),
78
(
2019
).
10.
B. W. J.
Chen
,
D.
Kirvassilis
,
Y.
Bai
, and
M.
Mavrikakis
,
J. Phys. Chem. C
123
(
13
),
7551
7566
(
2018
).
11.
M. G.
Sensoy
and
M. M.
Montemore
,
J. Phys. Chem. C
124
(
16
),
8843
8853
(
2020
).
12.
Y.
Yang
,
H.
Zhang
,
J.
Wang
,
S.
Yang
,
T.
Liu
,
K.
Tao
, and
H.
Chang
,
J. Mater. Chem. A
7
(
18
),
11497
11505
(
2019
).
13.
L.
Zhu
,
H.
Xu
,
Y.
Nan
,
Y.
Xie
,
J.
Zhu
, and
D.
Cheng
,
Appl. Surf. Sci.
476
,
115
122
(
2019
).
14.
Q.
Yu
,
C.
Guo
,
J.
Ge
,
Y.
Zhao
,
Q.
Liu
,
P.
Gao
,
J.
Xiao
, and
H.
Li
,
J. Power Sources
453
,
227846
(
2020
).
15.
Z.
Zhang
,
X.
Li
,
C.
Zhong
,
N.
Zhao
,
Y.
Deng
,
X.
Han
, and
W.
Hu
,
Angew. Chem., Int. Ed.
59
(
18
),
7245
7250
(
2020
).
16.
Y.
Wang
,
W.
Wang
,
K.-N.
Fan
, and
J.
Deng
,
Surf. Sci.
490
,
125
132
(
2001
).
17.
A.
Michaelides
,
K.
Reuter
, and
M.
Scheffler
,
J. Vac. Sci. Technol. A
23
(
6
),
1487
(
2005
).
18.
M. M.
Montemore
,
M. A.
van Spronsen
,
R. J.
Madix
, and
C. M.
Friend
,
Chem. Rev.
118
(
5
),
2816
2862
(
2018
).
19.
Y.
Xu
,
J.
Greeley
, and
M.
Mavrikakis
,
J. Am. Chem. Soc.
127
(
37
),
12823
12827
(
2004
).
20.
B. V.
Andryushechkin
,
V. M.
Shevlyuga
,
T. V.
Pavlova
,
G. M.
Zhidomirov
, and
K. N.
Eltsov
,
J. Chem. Phys.
148
(
24
),
244702
(
2018
).
21.
C. T.
Campbell
,
Surf. Sci.
157
,
43
60
(
1985
).
22.
A.
Raukema
,
D. A.
Butler
,
F. M. A.
Box
, and
A. W.
Kleyn
,
Surf. Sci.
347
(
1–2
),
151
168
(
1995
).
23.
R. B.
Grant
and
R. M.
Lambert
,
Surf. Sci.
146
(
1
),
256
268
(
1984
).
24.
D.
Schmeisser
and
K.
Jacobi
,
Surf. Sci.
156
,
911
919
(
1985
).
25.
D. C.
Ford
,
A. U.
Nilekar
,
Y.
Xu
, and
M.
Mavrikakis
,
Surf. Sci.
604
(
19–20
),
1565
1575
(
2010
).
26.
B.
Santra
,
J.
Klimeš
,
A.
Tkatchenko
,
D.
Alfè
,
B.
Slater
,
A.
Michaelides
,
R.
Car
, and
M.
Scheffler
,
J. Chem. Phys.
139
(
15
),
154702
(
2013
).
27.
M.
Kim
,
W. J.
Kim
,
T.
Gould
,
E. K.
Lee
,
S.
Lebègue
, and
H.
Kim
,
J. Am. Chem. Soc.
142
(
5
),
2346
2354
(
2020
).
28.
A. J.
Cohen
,
P.
Mori-Sanchez
, and
W.
Yang
,
Science
321
(
5890
),
792
794
(
2008
).
29.
S.
Adhikari
,
H.
Tang
,
B.
Neupane
,
A.
Ruzsinszky
, and
G. I.
Csonka
,
Phys. Rev. Mater.
4
(
2
),
025005
(
2020
).
30.
D.
Mahlberg
,
S.
Sakong
,
K.
Forster-Tonigold
, and
A.
Gross
,
J. Chem. Theory Comput.
15
(
5
),
3250
3259
(
2019
).
31.
A. J. R.
Hensley
,
K.
Ghale
,
C.
Rieg
,
T.
Dang
,
E.
Anderst
,
F.
Studt
,
C. T.
Campbell
,
J.-S.
McEwen
, and
Y.
Xu
,
J. Phys. Chem. C
121
(
9
),
4937
4945
(
2017
).
32.
S.
Tsuzuki
and
H. P.
Lüthi
,
J. Chem. Phys.
114
(
9
),
3949
3957
(
2001
).
33.
M.
Yan
,
Z.-Q.
Huang
,
Y.
Zhang
, and
C.-R.
Chang
,
Phys. Chem. Chem. Phys.
19
(
3
),
2364
2371
(
2017
).
34.
J.
Sun
,
A.
Ruzsinszky
, and
J. P.
Perdew
,
Phys. Rev. Lett.
115
(
3
),
036402
(
2015
).
35.
R.
Sabatini
,
T.
Gorni
, and
S.
de Gironcoli
,
Phys. Rev. B
87
(
4
),
41108
41112
(
2013
).
36.
H.
Peng
,
Z.-H.
Yang
,
J. P.
Perdew
, and
J.
Sun
,
Phys. Rev. X
6
(
4
),
41005
41020
(
2016
).
37.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
(
1
),
15
50
(
1996
).
38.
P. E.
Blöchl
,
Phys. Rev. B
50
(
24
),
17953
17979
(
1994
).
39.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
40.
V. L.
Deringer
,
A. L.
Tchougréeff
, and
R.
Dronskowski
,
J. Phys. Chem. A
115
(
21
),
5461
5466
(
2011
).
41.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
(
15
),
154104
(
2010
).
42.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
,
J. Phys.: Condens. Matter
22
(
2
),
022201
(
2009
).
43.
G.
Henkelman
,
J. Chem. Phys.
113
(
22
),
9901
9904
(
2000
).
44.
M. E.
Turano
,
R. G.
Farber
,
E. C. N.
Oskorep
,
R. A.
Rosenberg
, and
D. R.
Killelea
,
J. Phys. Chem. C
124
(
2
),
1382
1389
(
2019
).
45.
J. G.
Brandenburg
,
J. E.
Bates
,
A.
Ruzsinszky
,
J.
Sun
, and
J. P.
Perdew
,
Phys. Rev. B
94
,
115114
(
2016
).
46.
A. P.
Bartók
and
J. R.
Yates
,
J. Chem. Phys.
150
(
16
),
161101
(
2019
).
47.
S.
Ehlert
,
U.
Huniar
,
J.
Ning
,
J. W.
Furness
,
J.
Sun
,
A. D.
Kaplan
,
J. P.
Perdew
, and
J. G.
Brandenburg
,
J. Chem. Phys.
154
(
6
),
061101
(
2021
).
48.
P.
Mkhonto
,
H.
Chauke
, and
P.
Ngoepe
,
Minerals
5
(
4
),
665
678
(
2015
).
49.
Y.
Xu
and
M.
Mavrikakis
,
J. Phys. Chem. B
107
(
35
),
9298
9307
(
2003
).
50.
J.
Xie
,
S.
de Gironcoli
,
S.
Baroni
, and
M.
Scheffler
,
Phys. Rev. B
59
(
2
),
970
974
(
1999
).
51.
H.
Oughaddou
,
S.
Sawaya
,
J.
Goniakowski
,
B.
Aufray
,
G.
Le Lay
,
J. M.
Gay
,
G.
Tréglia
,
J. P.
Bibérian
,
N.
Barrett
,
C.
Guillot
,
A.
Mayne
, and
G.
Dujardin
,
Phys. Rev. B
62
(
24
),
16653
16656
(
2000
).
52.
P.
Quaino
,
E.
Santos
,
G.
Soldano
, and
W.
Schmickler
,
Adv. Phys. Chem.
2011
,
1
14
.
53.
T.
Björkman
,
A.
Gulans
,
A. V.
Krasheninnikov
, and
R. M.
Nieminen
,
Phys. Rev. Lett.
108
(
23
),
235502
(
2012
).
54.
S.
Liu
,
M. G.
White
, and
P.
Liu
,
ChemCatChem
10
(
3
),
540
549
(
2018
).
55.
Z.-y.
Gao
,
W.-j.
Yang
,
X.-l.
Ding
,
G.
Lv
, and
W.-p.
Yan
,
Phys. Chem. Chem. Phys.
20
(
10
),
7333
7341
(
2018
).
56.
S.
Gautier
,
S. N.
Steinmann
,
C.
Michel
,
P.
Fleurat-Lessard
, and
P.
Sautet
,
Phys. Chem. Chem. Phys.
17
(
43
),
28921
28930
(
2015
).
57.
B.
Vlaisavljevich
,
J.
Huck
,
Z.
Hulvey
,
K.
Lee
,
J. A.
Mason
,
J. B.
Neaton
,
J. R.
Long
,
C. M.
Brown
,
D.
Alfè
,
A.
Michaelides
, and
B.
Smit
,
J. Phys. Chem. A
121
(
21
),
4139
4151
(
2017
).
58.
W.-X.
Li
,
C.
Stampfl
, and
M.
Scheffler
,
Phys. Rev. B
65
(
7
),
75407
(
2002
).
59.
B.-T.
Teng
,
X.-D.
Wen
,
M.
Fan
,
F.-M.
Wu
, and
Y.
Zhang
,
Phys. Chem. Chem. Phys.
16
(
34
),
18563
18569
(
2014
).
60.
A. W.
Czanderna
,
J. Phys. Chem.
68
(
10
),
2765
2771
(
1964
).
61.
I.
Goikoetxea
,
J.
Beltrán
,
J.
Meyer
,
J.
Iñaki Juaristi
,
M.
Alducin
, and
K.
Reuter
,
New J. Phys.
14
(
1
),
013050
(
2012
).
62.
A. F.
Carley
,
P. R.
Davies
,
M. W.
Roberts
, and
K. K.
Thomas
,
Surf. Sci.
238
(
1–3
),
L467
L472
(
1990
).
63.
M.
Endo
,
T.
Matsumoto
,
J.
Kubota
,
K.
Domen
, and
C.
Hirose
,
J. Phys. Chem. B
104
(
20
),
4916
4922
(
2000
).
64.
A. W.
Kleyn
,
D. A.
Butler
, and
A.
Raukenma
,
Surf. Sci.
363
(
1–3
),
29
41
(
1996
).
65.
M.
Poberžnik
and
A.
Kokalj
,
J. Phys. Chem. C
120
(
45
),
25915
25922
(
2016
).
66.
S.
Alvarez
,
Dalton Trans.
42
(
24
),
8617
8636
(
2013
).
67.
P. J.
Feibelman
,
B.
Hammer
,
J. K.
Nørskov
,
F.
Wagner
,
M.
Scheffler
,
R.
Stumpf
,
R.
Watwe
, and
J.
Dumesic
,
J. Phys. Chem. B
105
(
18
),
4018
(
2001
).
68.
P.
Lazić
,
M.
Alaei
,
N.
Atodiresei
,
V.
Caciuc
,
R.
Brako
, and
S.
Blügel
,
Phys. Rev. B
81
(
4
),
045401
(
2010
).
69.
F.
Abild-Pedersen
and
M. P.
Andersson
,
Surf. Sci.
601
(
7
),
1747
1753
(
2007
).
70.
Y.
Wang
,
S.
de Gironcoli
,
N. S.
Hush
, and
J. R.
Reimers
,
J. Am. Chem. Soc.
129
(
34
),
10402
10407
(
2007
).
71.
T.
Gould
,
E. R.
Johnson
, and
S. A.
Tawfik
,
Beilstein J. Org. Chem.
14
,
1181
1191
(
2018
).
You do not currently have access to this content.