Plasmonic nanoparticles in close vicinity to a metal surface confine light to nanoscale volumes within the insulating gap. With gap sizes in the range of a few nanometers or below, atomic-scale dynamical phenomena within the nanogap come into reach. However, at these tiny scales, an ultra-smooth material is a crucial requirement. Here, we demonstrate large-scale (50 μm) single-crystalline silver flakes with a truly atomically smooth surface, which are an ideal platform for vertically assembled silver plasmonic nanoresonators. We investigate crystalline silver nanowires in a sub-2 nm separation to the silver surface and observe narrow plasmonic resonances with a quality factor Q of about 20. We propose a concept toward the observation of the spectral diffusion of the lowest-frequency cavity plasmon resonance and present first measurements. Our study demonstrates the benefit of using purely crystalline silver for plasmonic nanoparticle-on-mirror resonators and further paves the way toward the observation of dynamic phenomena within a nanoscale gap.

1.
J.
Kern
,
S.
Großmann
,
N. V.
Tarakina
,
T.
Häckel
,
M.
Emmerling
,
M.
Kamp
,
J.-S.
Huang
,
P.
Biagioni
,
J. C.
Prangsma
, and
B.
Hecht
, “
Atomic-scale confinement of resonant optical fields
,”
Nano Lett.
12
,
5504
5509
(
2012
).
2.
R.
Chikkaraddy
,
X.
Zheng
,
F.
Benz
,
L. J.
Brooks
,
B.
de Nijs
,
C.
Carnegie
,
M.-E.
Kleemann
,
J.
Mertens
,
R. W.
Bowman
,
G. A. E.
Vandenbosch
,
V. V.
Moshchalkov
, and
J. J.
Baumberg
, “
How ultranarrow gap symmetries control plasmonic nanocavity modes: From cubes to spheres in the nanoparticle-on-mirror
,”
ACS Photonics
4
,
469
475
(
2017
).
3.
W.
Chen
,
S.
Zhang
,
Q.
Deng
, and
H.
Xu
, “
Probing of sub-picometer vertical differential resolutions using cavity plasmons
,”
Nat. Commun.
9
,
801
(
2018
).
4.
J. J.
Baumberg
,
J.
Aizpurua
,
M. H.
Mikkelsen
, and
D. R.
Smith
, “
Extreme nanophotonics from ultrathin metallic gaps
,”
Nat. Mater.
18
,
668
678
(
2019
).
5.
F.
Benz
,
M. K.
Schmidt
,
A.
Dreismann
,
R.
Chikkaraddy
,
Y.
Zhang
,
A.
Demetriadou
,
C.
Carnegie
,
H.
Ohadi
,
B.
de Nijs
,
R.
Esteban
,
J.
Aizpurua
, and
J. J.
Baumberg
, “
Single-molecule optomechanics in ‘picocavities
,’”
Science
354
,
726
729
(
2016
).
6.
O. S.
Ojambati
,
R.
Chikkaraddy
,
W. D.
Deacon
,
M.
Horton
,
D.
Kos
,
V. A.
Turek
,
U. F.
Keyser
, and
J. J.
Baumberg
, “
Quantum electrodynamics at room temperature coupling a single vibrating molecule with a plasmonic nanocavity
,”
Nat. Commun.
10
,
1049
(
2019
).
7.
A.
Xomalis
,
R.
Chikkaraddy
,
E.
Oksenberg
,
I.
Shlesinger
,
J.
Huang
,
E. C.
Garnett
,
A. F.
Koenderink
, and
J. J.
Baumberg
, “
Controlling optically driven atomic migration using crystal-facet control in plasmonic nanocavities
,”
ACS Nano
14
,
10562
10568
(
2020
).
8.
W.
Li
,
Q.
Zhou
,
P.
Zhang
, and
X.-W.
Chen
, “
Bright optical eigenmode of 1 nm3 mode volume
,”
Phys. Rev. Lett.
126
,
257401
(
2021
).
9.
T. B.
Hoang
,
G. M.
Akselrod
, and
M. H.
Mikkelsen
, “
Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities
,”
Nano Lett.
16
,
270
275
(
2016
).
10.
C.
Carnegie
,
M.
Urbieta
,
R.
Chikkaraddy
,
B.
de Nijs
,
J.
Griffiths
,
W. M.
Deacon
,
M.
Kamp
,
N.
Zabala
,
J.
Aizpurua
, and
J. J.
Baumberg
, “
Flickering nanometre-scale disorder in a crystal lattice tracked by plasmonic flare light emission
,”
Nat. Commun.
11
,
682
(
2020
).
11.
W.
Chen
,
P.
Roelli
,
A.
Ahmed
,
S.
Verlekar
,
H.
Hu
,
K.
Banjac
,
M.
Lingenfelder
,
T. J.
Kippenberg
,
G.
Tagliabue
, and
C.
Galland
, “
Intrinsic luminescence blinking from plasmonic nanojunctions
,”
Nat. Commun.
12
,
2731
(
2021
).
12.
E. W.
Visser
,
M.
Horáček
, and
P.
Zijlstra
, “
Plasmon rulers as a probe for real-time microsecond conformational dynamics of single molecules
,”
Nano Lett.
18
,
7927
7934
(
2018
).
13.
J.-S.
Huang
,
V.
Callegari
,
P.
Geisler
,
C.
Brüning
,
J.
Kern
,
J. C.
Prangsma
,
X.
Wu
,
T.
Feichtner
,
J.
Ziegler
,
P.
Weinmann
,
M.
Kamp
,
A.
Forchel
,
P.
Biagioni
,
U.
Sennhauser
, and
B.
Hecht
, “
Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry
,”
Nat. Commun.
1
,
150
(
2010
).
14.
I. A.
Rodionov
,
A. S.
Baburin
,
A. R.
Gabidullin
,
S. S.
Maklakov
,
S.
Peters
,
I. A.
Ryzhikov
, and
A. V.
Andriyash
, “
Quantum engineering of atomically smooth single-crystalline silver films
,”
Sci. Rep.
9
,
12232
(
2019
).
15.
A. S.
Baburin
,
A. M.
Merzlikin
,
A. V.
Baryshev
,
I. A.
Ryzhikov
,
Y. V.
Panfilov
, and
I. A.
Rodionov
, “
Silver-based plasmonics: Golden material platform and application challenges [invited]
,”
Opt. Mater. Express
9
,
611
642
(
2019
).
16.
C.
Schörner
,
S.
Adhikari
, and
M.
Lippitz
, “
A single-crystalline silver plasmonic circuit for visible quantum emitters
,”
Nano Lett.
19
,
3238
3243
(
2019
).
17.
C.
Schörner
and
M.
Lippitz
, “
Single molecule nonlinearity in a plasmonic waveguide
,”
Nano Lett.
20
,
2152
2156
(
2020
).
18.
C.
Tserkezis
,
R.
Esteban
,
D. O.
Sigle
,
J.
Mertens
,
L. O.
Herrmann
,
J. J.
Baumberg
, and
J.
Aizpurua
, “
Hybridization of plasmonic antenna and cavity modes: Extreme optics of nanoparticle-on-mirror nanogaps
,”
Phys. Rev. A
92
,
053811
(
2015
).
19.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
, 2nd ed. (
Cambridge University Press
,
2012
).
20.
K.
Chen
,
G.
Razinskas
,
H.
Vieker
,
H.
Gross
,
X.
Wu
,
A.
Beyer
,
A.
Gölzhäuser
, and
B.
Hecht
, “
High-Q, low-mode-volume and multiresonant plasmonic nanoslit cavities fabricated by helium ion milling
,”
Nanoscale
10
,
17148
17155
(
2018
).
21.
B.
Wang
,
P.
Yu
,
W.
Wang
,
X.
Zhang
,
H. C.
Kuo
,
H.
Xu
, and
Z. M.
Wang
, “
High-Q plasmonic resonances: Fundamentals and applications
,”
Adv. Opt. Mater.
9
,
2001520
(
2021
).
22.
W.
Jiang
,
H.
Hu
,
Q.
Deng
,
S.
Zhang
, and
H.
Xu
, “
Temperature-dependent dark-field scattering of single plasmonic nanocavity
,”
Nanophotonics
9
,
3347
3356
(
2020
).
23.
P.
Zijlstra
,
P. M. R.
Paulo
, and
M.
Orrit
, “
Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod
,”
Nat. Nanotechnol.
7
,
379
382
(
2012
).
24.
R. W.
Taylor
and
V.
Sandoghdar
, “
Interferometric scattering microscopy: Seeing single nanoparticles and molecules via Rayleigh scattering
,”
Nano Lett.
19
,
4827
4835
(
2019
).
25.
P.
Kukura
,
M.
Celebrano
,
A.
Renn
, and
V.
Sandoghdar
, “
Imaging a single quantum dot when it is dark
,”
Nano Lett.
9
,
926
929
(
2009
).
26.
T.
Jollans
,
M. D.
Baaske
, and
M.
Orrit
, “
Nonfluorescent optical probing of single molecules and nanoparticles
,”
J. Phys. Chem. C
123
,
14107
14117
(
2019
).
27.
P.
Kukura
,
M.
Celebrano
,
A.
Renn
, and
V.
Sandoghdar
, “
Single-molecule sensitivity in optical absorption at room temperature
,”
J. Phys. Chem. Lett.
1
,
3323
3327
(
2010
).
28.
E. A.
Abbondanzieri
,
W. J.
Greenleaf
,
J. W.
Shaevitz
,
R.
Landick
, and
S. M.
Block
, “
Direct observation of base-pair stepping by RNA polymerase
,”
Nature
438
,
460
465
(
2005
).
29.
A.
Ahmed
,
K.
Banjac
,
S. S.
Verlekar
,
F. P.
Cometto
,
M.
Lingenfelder
, and
C.
Galland
, “
Structural order of the molecular adlayer impacts the stability of nanoparticle-on-mirror plasmonic cavities
,”
ACS Photonics
8
,
1863
1872
(
2021
).
30.
P. B.
Johnson
and
R. W.
Christy
, “
Optical constants of the noble metals
,”
Phys. Rev. B
6
,
4370
4379
(
1972
).
You do not currently have access to this content.