Theories of strongly stretched polymer brushes, particularly the parabolic brush theory, are valuable for providing analytically tractable predictions for the thermodynamic behavior of surface-grafted polymers in a wide range of settings. However, the parabolic brush limit fails to describe polymers grafted to convex curved substrates, such as the surfaces of spherical nanoparticles or the interfaces of strongly segregated block copolymers. It has previously been shown that strongly stretched curved brushes require a boundary layer devoid of free chain ends, requiring modifications of the theoretical analysis. While this “end-exclusion zone” has been successfully incorporated into the descriptions of brushes grafted onto the outer surfaces of cylinders and spheres, the behavior of brushes on surfaces of arbitrary curvature has not yet been studied. We present a formulation of the strong-stretching theory for molten brushes on the surfaces of arbitrary curvature and identify four distinct regimes of interest for which brushes are predicted to possess end-exclusion zones, notably including regimes of positive mean curvature but negative Gaussian curvature. Through numerical solutions of the strong-stretching brush equations, we report predicted scaling of the size of the end-exclusion zone, the chain end distribution, the chain polarization, and the free energy of stretching with mean and Gaussian surface curvatures. Through these results, we present a comprehensive picture of how the brush geometry influences the end-exclusion zones and exact strong-stretching free energies, which can be applied, for example, to model the full spectrum of brush geometries encountered in block copolymer melt assembly.

1.
S.
Alexander
, “
Adsorption of chain molecules with a polar head a scaling description
,”
J. Phys.
38
,
983
987
(
1977
).
2.
P. G.
De Gennes
, “
Scaling theory of polymer adsorption
,”
J. Phys.
37
,
1445
1452
(
1976
).
3.
P. G.
de Gennes
, “
Conformations of polymers attached to an interface
,”
Macromolecules
13
,
1069
1075
(
1980
).
4.
S. T.
Milner
, “
Polymer brushes
,”
Science
251
,
905
914
(
1991
).
5.
A. N.
Semenov
, “
Contribution to the theory of microphase layering in block-copolymer melts
,”
Sov. Phys. JETP
61
,
733
742
(
1985
).
6.
S. T.
Milner
,
T. A.
Witten
, and
M. E.
Cates
, “
A parabolic density profile for grafted polymers
,”
Eur. Lett.
5
,
413
418
(
1988
).
7.
S. T.
Milner
,
T. A.
Witten
, and
M. E.
Cates
, “
Effects of polydispersity in the end-grafted polymer brush
,”
Macromolecules
22
,
853
861
(
1989
).
8.
M.
Murat
and
G. S.
Grest
, “
Structure of a grafted polymer brush: A molecular dynamics simulation
,”
Macromolecules
22
,
4054
4059
(
1989
).
9.
P.
Auroy
,
Y.
Mir
, and
L.
Auvray
, “
Local structure and density profile of polymer brushes
,”
Phys. Rev. Lett.
69
,
93
95
(
1992
).
10.
G. S.
Grest
, “
Grafted polymer brushes: A constant surface pressure molecular dynamics simulation
,”
Macromolecules
27
,
418
426
(
1994
).
11.
M. A.
Carignano
and
I.
Szleifer
, “
Pressure isotherms, phase transition, instability, and structure of tethered polymers in good, θ, and poor solvents
,”
J. Chem. Phys.
100
,
3210
3223
(
1994
).
12.
R. R.
Netz
and
M.
Schick
, “
Polymer brushes: From self-consistent field theory to classical theory
,”
Macromolecules
31
,
5105
5122
(
1998
).
13.
M.
Manghi
,
M.
Aubouy
,
C.
Gay
, and
C.
Ligoure
, “
Inwardly curved polymer brushes: Concave is not like convex
,”
Eur. Phys. J. E
5
,
519
530
(
2001
).
14.
D. I.
Dimitrov
,
A.
Milchev
,
K.
Binder
, and
D. W.
Heermann
, “
Structure of polymer brushes in cylindrical tubes: A molecular dynamics simulation
,”
Macromol. Theory Simul.
15
,
573
583
(
2006
).
15.
M. W.
Matsen
, “
Strong-segregation limit of the self-consistent field theory for diblock copolymer melts
,”
Eur. Phys. J. E: Soft Matter
33
,
297
306
(
2010
).
16.
R. C.
Ball
,
J. F.
Marko
,
S. T.
Milner
, and
T. A.
Witten
, “
Polymers grafted to a convex surface
,”
Macromolecules
24
,
693
703
(
1991
).
17.
N.
Dan
and
M.
Tirrell
, “
Polymers tethered to curves interfaces: A self-consistent-field analysis
,”
Macromolecules
25
,
2890
2895
(
1992
).
18.
H.
Li
and
T. A.
Witten
, “
Polymers grafted to convex surfaces: A variational approach
,”
Macromolecules
27
,
449
457
(
1994
).
19.
V. A.
Belyi
, “
Exclusion zone of convex brushes in the strong-stretching limit
,”
J. Chem. Phys.
121
,
6547
6554
(
2004
).
20.
S.
Hyde
,
B. W.
Ninham
,
S.
Andersson
,
K.
Larsson
,
T.
Landh
,
Z.
Blum
, and
S.
Lidin
, “
The mathematics of curvature
,” in
The Language of Shape
(
Elsevier Science B.V.
,
Amsterdam
,
1997
), Chap. 1, pp.
1
42
.
21.
R. D.
Kamien
, “
The geometry of soft materials: A primer
,”
Rev. Mod. Phys.
74
,
953
971
(
2002
).
22.
P. D.
Olmsted
and
S. T.
Milner
, “
Strong segregation theory of bicontinuous phases in block copolymers
,”
Macromolecules
31
,
4011
4022
(
1998
).
23.
A. E.
Likhtman
and
A. N.
Semenov
, “
Stability of the OBDD structure for diblock copolymer melts in the strong segregation limit
,”
Macromolecules
27
,
3103
3106
(
1994
).
24.
K.
Ohno
,
T.
Morinaga
,
S.
Takeno
,
Y.
Tsujii
, and
T.
Fukuda
, “
Suspensions of silica particles grafted with concentrated polymer brush: Effects of graft chain length on brush layer thickness and colloidal crystallization
,”
Macromolecules
40
,
9143
9150
(
2007
).
25.
D.
Dukes
,
Y.
Li
,
S.
Lewis
,
B.
Benicewicz
,
L.
Schadler
, and
S. K.
Kumar
, “
Conformational transitions of spherical polymer brushes: Synthesis, characterization, and theory
,”
Macromolecules
43
,
1564
1570
(
2010
).
26.
C.
Tung
and
A.
Cacciuto
, “
Phase separation of mixed polymer brushes on surfaces with nonuniform curvature
,”
J. Chem. Phys.
139
,
194902
(
2013
).
27.
S. T.
Milner
, “
Strongly stretched polymer brushes
,”
J. Polym. Sci., Part B: Polym. Phys.
32
,
2743
2755
(
1994
).
28.
G. M.
Grason
, “
The packing of soft materials: Molecular asymmetry, geometric frustration and optimal lattices in block copolymer melts
,”
Phys. Rep.
433
,
1
64
(
2006
).
29.
The quadratic form of A(z) need not require the normal extension of the chains in the brush. This form can also arise from chains trajectories that are tilted with respect to normals of the anchoring surface.
30.
S. F.
Edwards
, “
The statistical mechanics of polymers with excluded volume
,”
Proc. Phys. Soc
85
,
613
624
(
1965
).
31.
M.
Matsen
, “
The standard Gaussian model for block copolymer melts
,”
J. Phys.: Condens. Matter
14
,
R21
(
2002
).
32.
M.
Adamuţi-Trache
,
W. E.
McMullen
, and
J. F.
Douglas
, “
Segmental concentration profiles of end-tethered polymers with excluded-volume and surface interactions
,”
J. Chem. Phys.
105
,
4798
4811
(
1996
).
33.
J. F.
Douglas
, “
Polymer science applications of path-integration, integral equations, and fractional calculus
,” in
Applications of Fractional Calculus in Physics
, edited by
R.
Hilfer
(
World Scientific
,
2000
), Chap. 6, p.
256
.
34.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes
, The Art of Scientific Computing, 3rd ed. (
Cambridge University Press
,
2007
).
35.
M. S.
Dimitriyev
and
G. M.
Grason
, “
Source data for ‘End exclusion zones in strongly stretched, molten polymer brushes of arbitrary shape
,’” ,
2021
.
36.
A.
Jafarian
,
S.
Measoomy Nia
,
A. K.
Golmankhaneh
, and
D.
Baleanu
, “
On Bernstein polynomials method to the system of Abel integral equations
,”
Abstr. Appl. Anal.
2014
,
796286
.
37.
E.
Helfand
, “
Block copolymer theory. III. Statistical mechanics of the microdomain structure
,”
Macromolecules
8
,
552
556
(
1975
).
38.
E. W.
Cochran
,
C. J.
Garcia-Cervera
, and
G. H.
Fredrickson
, “
Stability of the gyroid phase in diblock copolymers at strong segregation
,”
Macromolecules
39
,
2449
2451
(
2006
).
39.
A.
Reddy
,
X.
Feng
,
E. L.
Thomas
, and
G. M.
Grason
, “
Block copolymers beneath the surface: Measuring and modeling complex morphology at the subdomain scale
,”
Macromolecules
54
,
9223
9257
(
2021
).
40.
G. H.
Fredrickson
,
A.
Ajdari
,
L.
Leibler
, and
J. P.
Carton
, “
Surface modes and deformation energy of a molten polymer brush
,”
Macromolecules
25
,
2882
2889
(
1992
).
41.
W.
Zhao
,
T. P.
Russell
, and
G. M.
Grason
, “
Orientational interactions in block copolymer melts: Self-consistent field theory
,”
J. Chem. Phys.
137
,
104911
(
2012
).
42.
I.
Prasad
,
Y.
Seo
,
L. M.
Hall
, and
G. M.
Grason
, “
Intradomain textures in block copolymers: Multizone alignment and biaxiality
,”
Phys. Rev. Lett.
118
,
247801
(
2017
).
43.
S. T.
Milner
and
T. A.
Witten
, “
Bending moduli of polymeric surfactant interfaces
,”
J. Phys. (France)
49
,
1951
1962
(
1988
).
44.
S. T.
Milner
, “
Chain architecture and asymmetry in copolymer microphases
,”
Macromolecules
27
,
2333
2335
(
1994
).
45.
T. M.
Birshtein
,
P. A.
Iakovlev
,
V. M.
Amoskov
,
F. A. M.
Leermakers
,
E. B.
Zhulina
, and
O. V.
Borisov
, “
On the curvature energy of a thin membrane decorated by polymer brushes
,”
Macromolecules
41
,
478
488
(
2008
).
46.
Z.
Lei
,
S.
Yang
, and
E.-Q.
Chen
, “
Membrane rigidity induced by grafted polymer brush
,”
Soft Matter
11
,
1376
1385
(
2015
).
47.
P.-G.
de Gennes
,
Scaling Concepts in Polymer Physics
(
Cornell University Press
,
Ithaca
,
1979
).
48.
T. A.
Witten
and
S. T.
Milner
, “
Two-component grafted polymer layers
,”
MRS Online Proc. Libr.
177
,
37
45
(
1989
).
49.
K. R.
Mecke
, “
Additivity, convexity, and beyond: Applications of Minkowski functionals in statistical physics
,” in
Statistical Physics and Spatial Statistics
, edited by
K. R.
Mecke
and
D.
Stoyan
(
Springer
,
Berlin, Heidelberg
,
2000
), pp.
111
184
.
You do not currently have access to this content.