Terpene-based natural deep eutectic solvents (NADES) formed by using carvone as the hydrogen bond acceptor and a series of organic acids including tartaric, succinic, malic, and lactic acids as hydrogen bond donors are studied using a combination of molecular simulation methods. Density functional theory was used to study small molecular clusters and the topological characterization of the intermolecular forces using the atoms-in-a-molecule approach. Close-range interactions between the optimized carvone bases eutectic solvents between carbon dioxide have been studied for potential utilization of these solvents for gas capture purposes. Furthermore, COSMO-RS calculations have been carried out for the carbon dioxide solubilization performance of NADES compounds and to obtain s-profiles to infer the polarity and H-bond forming ability of the studied solvents. On the other hand, molecular dynamics simulations were carried out to analyze the bulk liquid properties and their relationship with relevant macroscopic properties (e.g., density or thermal expansion). Last but not least, relevant toxicity properties of the studied systems were predicted and reported in this work. The reported results provide the characterization of environmentally friendly NADES and show the suitability of carvone for advanced applications as carbon dioxide solubilizers.

1.
Inventory of U.S. greenhouse gas emissions and sinks 1990-2019, Unites States Environmental Protection Agency, EPA430-R-21-005, http://www.epa.gov/sites/production/files/2021-04/documents/us-ghg-inventory-2021-main-text.pdf; accessed 27 May 2021.
2.
A. I.
Osman
,
M.
Hefny
,
M. I. A.
Abdel Maksoud
,
A. M.
Elgarahy
, and
D. W.
Rooney
, “
Recent advances in carbon capture storage and utilisation technologies: A review
,”
Environ. Chem. Lett.
19
,
797
849
(
2021
).
3.
P.
Luis
, “
Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives
,”
Desalination
380
,
93
99
(
2016
).
4.
S.
Badr
,
J.
Frutiger
,
K.
Hungerbuehler
, and
S.
Papadokonstantakis
, “
A framework for the environmental, health and safety hazard assessment for amine-based post combustion CO2 capture
,”
Int. J. Greenhouse Gas Control
56
,
202
220
(
2017
).
5.
J.
Davis
and
G.
Rochelle
, “
Thermal degradation of monoethanolamine at stripper conditions
,”
Energy Procedia
1
,
327
333
(
2009
).
6.
A. P.
Hallenbeck
and
J. R.
Kitchin
, “
Effects of O2 and SO2 on the capture capacity of a primary-amine based polymeric CO2 sorbent
,”
Ind. Eng. Chem. Res.
52
,
10788
10794
(
2013
).
7.
M. T.
Mota-Martinez
,
P.
Brandl
,
J. P.
Hallett
, and
N.
Mac Dowell
, “
Challenges and opportunities for the utilisation of ionic liquids as solvents for CO2 capture
,”
Mol. Syst. Des. Eng.
3
,
560
571
(
2018
).
8.
T.
Altamash
,
A.
Amhamed
,
S.
Aparicio
, and
M.
Atilhan
, “
Effect of hydrogen bond donors and acceptors on CO2 absorption by deep eutectic solvents
,”
Processes
8
,
1533
(
2020
).
9.
Y.
Dai
,
E.
Rozema
,
R.
Verpoorte
, and
Y. H.
Choi
, “
Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents
,”
J. Chromatogr. A
1434
,
50
56
(
2016
).
10.
R.
Ullah
,
M.
Atilhan
,
B.
Anaya
,
M.
Khraisheh
,
G.
García
,
A.
ElKhattat
,
M.
Tariq
, and
S.
Aparicio
, “
A detailed study of cholinium chloride and levulinic acid deep eutectic solvent system for CO2 capture via experimental and molecular simulation approaches
,”
Phys. Chem. Chem. Phys.
17
,
20941
20960
(
2015
).
11.
Y.
Liu
,
J. B.
Friesen
,
J. B.
McAlpine
,
D. C.
Lankin
,
S.-N.
Chen
, and
G. F.
Pauli
, “
Natural deep eutectic solvents: Properties, applications, and perspectives
,”
J. Nat. Prod.
81
,
679
690
(
2018
).
12.
Y.
Dai
,
J.
van Spronsen
,
G.-J.
Witkamp
,
R.
Verpoorte
, and
Y. H.
Choi
, “
Natural deep eutectic solvents as new potential media for green technology
,”
Anal. Chim. Acta
766
,
61
68
(
2013
).
13.
P.
Velásquez
,
D.
Bustos
,
G.
Montenegro
, and
A.
Giordano
, “
Ultrasound-assisted extraction of anthocyanins using natural deep eutectic solvents and their incorporation in edible films
,”
Molecules
26
,
984
(
2021
).
14.
N.
Guo
,
P.
Kou
,
Y.-W.
Jiang
,
L.-T.
Wang
,
L.-J.
Niu
,
Z.-M.
Liu
, and
Y.-J.
Fu
, “
Natural deep eutectic solvents couple with integrative extraction technique as an effective approach for mulberry anthocyanin extraction
,”
Food Chem.
296
,
78
85
(
2019
).
15.
P.
Liu
,
J.-W.
Hao
,
L.-P.
Mo
, and
Z.-H.
Zhang
, “
Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions
,”
RSC Adv.
5
,
48675
48704
(
2015
).
16.
Y.
Liu
,
H.
Yu
,
Y.
Sun
,
S.
Zeng
,
X.
Zhang
,
Y.
nie
,
S.
Zhang
, and
X.
Ji
, “
Screening deep eutectic solvents for CO2 capture with COSMO-RS
,”
Front. Chem.
8
,
82
(
2020
).
17.
S.
Rozas
,
N.
Alomari
,
M.
Atilhan
, and
S.
Aparicio
, “
Theoretical insights into the cineole-based deep eutectic solvents
,”
J. Chem. Phys.
154
,
184504
(
2021
).
18.
C. C. C. R.
de Carvalho
and
M. M. R.
da Fonseca
, “
Carvone: Why and how should one bother to produce this terpene
,”
Food Chem.
95
,
413
422
(
2006
).
19.
S.
Alsanea
and
D.
Liu
, “
BITC and S-carvone restrain high-fat diet-induced obesity and ameliorate hepatic steatosis and insulin resistance
,”
Pharm. Res.
34
,
2241
2249
(
2017
).
20.
M. D.
Hanwell
,
D. E.
Curtis
,
D. C.
Lonie
,
T.
Vandermeersch
,
E.
Zurek
, and
G. R.
Hutchison
, “
Avogadro: An advanced semantic chemical editor, visualization, and analysis platform
,”
J. Cheminf.
4
,
17
(
2012
).
21.
S.
Adams
,
P.
de Castro
,
P.
Echenique
,
J.
Estrada
,
M. D.
Hanwell
,
P.
Murray-Rust
,
P.
Sherwood
,
J.
Thomas
, and
J.
Townsend
, “
The Quixote project: Collaborative and open quantum chemistry data management in the internet age
,”
J. Cheminf.
3
,
38
(
2011
).
22.
F.
Neese
, “
The ORCA program system
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
78
(
2012
).
23.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
24.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1988
).
25.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
Consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
26.
R. F. W.
Bader
, “
Atoms in molecules
,”
Acc. Chem. Res.
18
,
9
15
(
1985
).
27.
T.
Lu
and
F.
Chen
, “
Multiwfn: A multifunctional wavefunction analyzer
,”
J. Comput. Chem.
33
,
580
592
(
2012
).
28.
N. S. M.
Vieira
,
i.
Vázquez-Fernández
,
J. M. M.
Araújo
,
N. V.
Plechkova
,
K. R.
Seddon
,
L. P. N.
Rebelo
, and
A. B.
Pereiro
, “
Physicochemical characterization of ionic liquid binary mixtures containing 1-butyl-3-methylimidazolium as the common cation
,”
J. Chem. Eng. Data
64
,
4891
4903
(
2019
).
29.
M.
Gonzalez-Miquel
,
J.
Palomar
, and
F.
Rodriguez
, “
Selection of ionic liquids for enhancing the gas solubility of volatile organic compounds
,”
J. Phys. Chem. B
117
,
296
306
(
2013
).
30.
A. P.
Lyubartsev
and
A.
Laaksonen
, “
M.Dynamix–A scalable portable parallel MD simulation package for arbitrary molecular mixtures
,”
Comput. Phys. Commun.
128
,
565
589
(
2000
).
31.
V.
Zoete
,
M. A.
Cuendet
,
A.
Grosdidier
, and
O.
Michielin
, “
SwissParam: A fast force field generation tool for small organic molecules
,”
J. Comput. Chem.
32
,
2359
2368
(
2011
).
32.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Matinez
, “
PACKMOL: A package for building initial configurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
,
2157
2164
(
2009
).
33.
M.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
, “
Reversible multiple time scale molecular dynamics
,”
J. Chem. Phys.
97
,
1990
2001
(
1992
).
34.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
35.
M.
Brehm
and
B.
Kirchner
, “
TRAVIS:A free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories
,”
J. Chem. Inf. Model.
51
,
2007
2023
(
2011
).
36.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
37.
H.
Yang
,
C.
Lou
,
L.
Sun
,
J.
Li
,
Y.
Cai
,
Z.
Wang
,
W.
Li
,
G.
Liu
, and
Y.
Tang
, “
admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties
,”
Bioinformatics
35
,
1067
1069
(
2019
).

Supplementary Material

You do not currently have access to this content.