The structure of the water/Pt(111) interface has been a subject of debate over the past decades. Here, we report the results of a room temperature molecular dynamics study based on neural network potentials, which allow us to access long time scale simulations while retaining ab initio accuracy. We find that the water/Pt(111) interface is characterized by a double layer composed of a primary, strongly bound adsorption layer with a coverage of 0.15 ML, which is coupled to a secondary, weakly bound adsorption layer with a coverage of 0.58 ML. By studying the order of the primary adsorption layer, we find that there is an effective repulsion between the adsorbed water molecules, which gives rise to a dynamically changing, semi-ordered interfacial structure, where the water molecules in the primary adsorption layer are distributed homogeneously across the interface, forming frequent hydrogen bonds to water molecules in the secondary adsorption layer. We further show that these conclusions are beyond the time scales accessible to ab initio molecular dynamics.

1.
V. L.
Deringer
and
G.
Csányi
, “
Machine learning based interatomic potential for amorphous carbon
,”
Phys. Rev. B
95
,
094203
(
2017
).
2.
J.
Carrasco
,
A.
Hodgson
, and
A.
Michaelides
, “
A molecular perspective of water at metal interfaces
,”
Nat. Mater.
11
,
667
674
(
2012
).
3.
O.
Björneholm
,
M. H.
Hansen
,
A.
Hodgson
,
L.-M.
Liu
,
D. T.
Limmer
,
A.
Michaelides
,
P.
Pedevilla
,
J.
Rossmeisl
,
H.
Shen
,
G.
Tocci
,
E.
Tyrode
,
M.-M.
Walz
,
J.
Werner
, and
H.
Bluhm
, “
Water at interfaces
,”
Chem. Rev.
116
,
7698
7726
(
2016
).
4.
M. K.
Debe
, “
Electrocatalyst approaches and challenges for automotive fuel cells
,”
Nature
486
,
43
51
(
2012
).
5.
J. K.
Nørskov
,
T.
Bligaard
,
A.
Logadottir
,
J. R.
Kitchin
,
J. G.
Chen
,
S.
Pandelov
, and
U.
Stimming
, “
Trends in the exchange current for hydrogen evolution
,”
J. Electrochem. Soc.
152
,
J23
(
2005
).
6.
J.
Durst
,
C.
Simon
,
A.
Siebel
,
P. J.
Rheinlander
,
T.
Schuler
,
M.
Hanzlik
,
J.
Herranz
,
F.
Hasche
, and
H. A.
Gasteiger
, “
(Invited) hydrogen oxidation and evolution reaction (HOR/HER) on Pt electrodes in acid vs. alkaline electrolytes: Mechanism, activity and particle size effects
,”
ECS Trans.
64
,
1069
1080
(
2014
).
7.
S. N.
Steinmann
,
R.
Ferreira De Morais
,
A. W.
Götz
,
P.
Fleurat-Lessard
,
M.
Iannuzzi
,
P.
Sautet
, and
C.
Michel
, “
Force field for water over Pt(111): Development, assessment, and comparison
,”
J. Chem. Theory Comput.
14
,
3238
3251
(
2018
).
8.
K.
Raghavan
,
K.
Foster
,
K.
Motakabbir
, and
M.
Berkowitz
, “
Structure and dynamics of water at the Pt(111) interface: Molecular dynamics study
,”
J. Chem. Phys.
94
,
2110
2117
(
1991
).
9.
D. T.
Limmer
,
A. P.
Willard
,
P.
Madden
, and
D.
Chandler
, “
Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
4200
4205
(
2013
).
10.
J.
Rossmeisl
,
J. K.
Nørskov
,
C. D.
Taylor
,
M. J.
Janik
, and
M.
Neurock
, “
Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111)
,”
J. Phys. Chem. B
110
,
21833
21839
(
2006
).
11.
E.
Skúlason
,
V.
Tripkovic
,
M. E.
Björketun
,
S.
Gudmundsdóttir
,
G.
Karlberg
,
J.
Rossmeisl
,
T.
Bligaard
,
H.
Jónsson
, and
J. K.
Nørskov
, “
Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations
,”
J. Phys. Chem. C
114
,
18182
18197
(
2010
).
12.
V.
Tripković
,
E.
Skúlason
,
S.
Siahrostami
,
J. K.
Nørskov
, and
J.
Rossmeisl
, “
The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations
,”
Electrochim. Acta
55
,
7975
7981
(
2010
).
13.
V.
Tripkovic
and
T.
Vegge
, “
Potential- and rate-determining step for oxygen reduction on Pt(111)
,”
J. Phys. Chem. C
121
,
26785
26793
(
2017
).
14.
S.
Surendralal
,
M.
Todorova
, and
J.
Neugebauer
, “
Impact of water coadsorption on the electrode potential of H-Pt(111)-liquid water interfaces
,”
Phys. Rev. Lett.
126
,
166802
(
2021
).
15.
R.
Khatib
,
A.
Kumar
,
S.
Sanvito
,
M.
Sulpizi
, and
C. S.
Cucinotta
, “
The nanoscale structure of the Pt-water double layer under bias revealed
,”
Electrochim. Acta
391
,
138875
(
2021
).
16.
H. H.
Kristoffersen
,
T.
Vegge
, and
H. A.
Hansen
, “
OH formation and H2 adsorption at the liquid water–Pt(111) interface
,”
Chem. Sci.
9
,
6912
6921
(
2018
).
17.
H. H.
Kristoffersen
,
K.
Chan
,
T.
Vegge
, and
H. A.
Hansen
, “
Energy–entropy competition in cation–hydroxyl interactions at the liquid water–Pt(111) interface
,”
Chem. Commun.
56
,
427
430
(
2020
).
18.

We use the term bilayer-like to indicate that this structure first described by Ogasaware et al.20 is similar to the traditional bilayer model proposed by Doering and Madey54 except the fact that all water molecules are co-planar.

19.
T.
Schiros
,
L.-Å.
Näslund
,
K.
Andersson
,
J.
Gyllenpalm
,
G. S.
Karlberg
,
M.
Odelius
,
H.
Ogasawara
,
L. G. M.
Pettersson
, and
A.
Nilsson
, “
Structure and bonding of the water–hydroxyl mixed phase on Pt(111)
,”
J. Phys. Chem. C
111
,
15003
15012
(
2007
).
20.
H.
Ogasawara
,
B.
Brena
,
D.
Nordlund
,
M.
Nyberg
,
A.
Pelmenschikov
,
L. G. M.
Pettersson
, and
A.
Nilsson
, “
Structure and bonding of water on Pt(111)
,”
Phys. Rev. Lett.
89
,
276102
(
2002
).
21.
A.
Michaelides
and
P.
Hu
, “
A density functional theory study of hydroxyl and the intermediate in the water formation reaction on Pt
,”
J. Chem. Phys.
114
,
513
(
2001
).
22.
S.
Nie
,
P. J.
Feibelman
,
N. C.
Bartelt
, and
K.
Thürmer
, “
Pentagons and heptagons in the first water layer on Pt(111)
,”
Phys. Rev. Lett.
105
,
026102
(
2010
).
23.
P. J.
Feibelman
,
N. C.
Bartelt
,
S.
Nie
, and
K.
Thürmer
, “
Interpretation of high-resolution images of the best-bound wetting layers on Pt(111)
,”
J. Chem. Phys.
133
,
154703
(
2010
).
24.
S.
Standop
,
A.
Redinger
,
M.
Morgenstern
,
T.
Michely
, and
C.
Busse
, “
Molecular structure of the H2O wetting layer on Pt(111)
,”
Phys. Rev. B
82
,
161412(R)
(
2010
).
25.
S.
Sakong
,
K.
Forster-Tonigold
, and
A.
Groß
, “
The structure of water at a Pt(111) electrode and the potential of zero charge studied from first principles
,”
J. Chem. Phys.
144
,
194701
(
2016
).
26.
S.
Schnur
and
A.
Groß
, “
Properties of metal–water interfaces studied from first principles
,”
New J. Phys.
11
,
125003
(
2009
).
27.
L. S.
Pedroza
,
A.
Poissier
, and
M.-V.
Fernández-Serra
, “
Local order of liquid water at metallic electrode surfaces
,”
J. Chem. Phys.
142
,
034706
(
2015
).
28.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
29.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
30.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
,
058301
(
2012
).
31.
S.
De
,
A. P.
Bartók
,
G.
Csányi
, and
M.
Ceriotti
, “
Comparing molecules and solids across structural and alchemical space
,”
Phys. Chem. Chem. Phys.
18
,
13754
13769
(
2016
).
32.
Z.
Li
,
J. R.
Kermode
, and
A.
De Vita
, “
Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces
,”
Phys. Rev. Lett.
114
,
096405
(
2015
).
33.
S. K.
Natarajan
and
J.
Behler
, “
Neural network molecular dynamics simulations of solid–liquid interfaces: Water at low-index copper surfaces
,”
Phys. Chem. Chem. Phys.
18
,
28704
28725
(
2016
).
34.
J.
Behler
, “
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
,”
J. Chem. Phys.
134
,
074106
(
2011
).
35.
J.
Behler
, “
Constructing high-dimensional neural network potentials: A tutorial review
,”
Int. J. Quantum Chem.
115
,
1032
1050
(
2015
).
36.
J.
Behler
, “
First principles neural network potentials for reactive simulations of large molecular and condensed systems
,”
Angew. Chem., Int. Ed.
56
,
12828
12840
(
2017
).
37.
B.
Cheng
,
E. A.
Engel
,
J.
Behler
,
C.
Dellago
, and
M.
Ceriotti
, “
Ab initio thermodynamics of liquid and solid water
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
1110
1115
(
2019
).
38.
A. H.
Larsen
,
J. J.
Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P. B.
Jensen
,
J.
Kermode
,
J. R.
Kitchin
,
E. L.
Kolsbjerg
,
J.
Kubal
,
K.
Kaasbjerg
,
S.
Lysgaard
,
J. B.
Maronsson
,
T.
Maxson
,
T.
Olsen
,
L.
Pastewka
,
A.
Peterson
,
C.
Rostgaard
,
J.
Schiøtz
,
O.
Schütt
,
M.
Strange
,
K. S.
Thygesen
,
T.
Vegge
,
L.
Vilhelmsen
,
M.
Walter
,
Z.
Zeng
, and
K. W.
Jacobsen
, “
The atomic simulation environment—A python library for working with atoms
,”
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
39.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
40.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
41.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
561
(
1993
).
42.
J.
Behler
,
R.
Martoňák
,
D.
Donadio
, and
M.
Parrinello
, “
Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential
,”
Phys. Rev. Lett.
100
,
185501
(
2008
).
43.
G. C.
Sosso
,
G.
Miceli
,
S.
Caravati
,
J.
Behler
, and
M.
Bernasconi
, “
Neural network interatomic potential for the phase change material GeTe
,”
Phys. Rev. B
85
,
174103
(
2012
).
44.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
45.
A.
Singraber
(
2021
). “
CompPhysVienna/n2p2: Neural network potential package
,” Zenodo. .
46.
A.
Singraber
,
J.
Behler
, and
C.
Dellago
, “
Library-based LAMMPS implementation of high-dimensional neural network potentials
,”
J. Chem. Theory Comput.
15
,
1827
1840
(
2019
).
47.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
,
511
519
(
1984
).
48.
W. G.
Hoover
, “
Constant-pressure equations of motion
,”
Phys. Rev. A
34
,
2499
2500
(
1986
).
49.
S.
Du
,
S.
Yoo
, and
J.
Li
, “
Comparison of the melting temperatures of classical and quantum water potential models
,”
Front. Phys.
5
,
34
(
2017
).
50.
M. F.
Calegari Andrade
,
H.-Y.
Ko
,
L.
Zhang
,
R.
Car
, and
A.
Selloni
, “
Free energy of proton transfer at the water–TiO2 interface from ab initio deep potential molecular dynamics
,”
Chem. Sci.
11
,
2335
2341
(
2020
).
51.
J. A.
Morrone
and
R.
Car
, “
Nuclear quantum effects in water
,”
Phys. Rev. Lett.
101
,
017801
(
2008
).
52.
L.
Verlet
, “
Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules
,”
Phys. Rev.
159
,
98
103
(
1967
).
53.
D. L.
Doering
and
T. E.
Madey
, “
The adsorption of water on clean and oxygen-dosed Ru(011)
,”
Surf. Sci.
123
,
305
337
(
1982
).
54.
M.
Ceriotti
,
W.
Fang
,
P. G.
Kusalik
,
R. H.
McKenzie
,
A.
Michaelides
,
M. A.
Morales
, and
T. E.
Markland
, “
Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges
,”
Chem. Rev.
116
,
7529
7550
(
2016
).
55.
See http://aimade.org/ for a detailed description of the Autonomous Materials Discovery project.
56.
A. E. G.
Mikkelsen
,
J.
Schiøtz
,
T.
Vegge
, and
K. W.
Jacobsen
, “
Dataset and training files for “Is the water/Pt(111) interface ordered at room tem-perature?
”,” (DTU Data, 2021); available at .

Supplementary Material

You do not currently have access to this content.