Embedding theory is a powerful computational chemistry approach to exploring the electronic structure and dynamics of complex systems, with Quantum Mechanical/Molecular Mechanics (QM/MM) being the prime example. A challenge arises when trying to apply embedding methodology to systems with diffusible particles, e.g., solvents, if some of them must be included in the QM region, for example, in the description of solvent-supported electronic states or reactions involving proton transfer or charge-transfer-to-solvent: without a special treatment, inter-diffusion of QM and MM particles will eventually lead to a loss of QM/MM separation. We have developed a new method called Flexible Boundary Layer using Exchange (FlexiBLE) that solves the problem by adding a biasing potential to the system that closely maintains QM/MM separation. The method rigorously preserves ensemble averages by leveraging their invariance to an exchange of identical particles. With a careful choice of the biasing potential and the use of a tree algorithm to include only important QM and MM exchanges, we find that the method has an MM-forcefield-like computational cost and thus adds negligible overhead to a QM/MM simulation. Furthermore, we show that molecular dynamics with the FlexiBLE bias conserves total energy, and remarkably, sub-diffusional dynamical quantities in the inner QM region are unaffected by the applied bias. FlexiBLE thus widens the range of chemistry that can be studied with embedding theory.

1.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
2.
J.
Gao
, “
Methods and applications of combined quantum mechanical and molecular mechanical potentials
,” in
Reviews in Computational Chemistry
(
John Wiley & Sons, Ltd.
,
1996
), pp.
119
185
.
3.
T.
Kerdcharoen
and
K.
Morokuma
,
Chem. Phys. Lett.
355
,
257
(
2002
).
4.
H.
Lin
and
D. G.
Truhlar
,
Theor. Chem. Acc.
117
,
185
(
2006
).
5.
S. C. L.
Kamerlin
,
M.
Haranczyk
, and
A.
Warshel
,
J. Phys. Chem. B
113
,
1253
(
2009
).
6.
H. M.
Senn
and
W.
Thiel
,
Angew. Chem., Int. Ed.
48
,
1198
(
2009
).
7.
A.
Heyden
,
H.
Lin
, and
D. G.
Truhlar
,
J. Phys. Chem. B
111
,
2231
(
2007
).
8.
R. E.
Bulo
,
B.
Ensing
,
J.
Sikkema
, and
L.
Visscher
,
J. Chem. Theory Comput.
5
,
2212
(
2009
).
9.
N.
Bernstein
,
C.
Várnai
,
I.
Solt
,
S. A.
Winfield
,
M. C.
Payne
,
I.
Simon
,
M.
Fuxreiter
, and
G.
Csányi
,
Phys. Chem. Chem. Phys.
14
,
646
(
2012
).
10.
C. N.
Rowley
and
B.
Roux
,
J. Chem. Theory Comput.
8
,
3526
(
2012
).
11.
N.
Takenaka
,
Y.
Kitamura
,
Y.
Koyano
, and
M.
Nagaoka
,
Chem. Phys. Lett.
524
,
56
(
2012
).
12.
R. E.
Bulo
,
C.
Michel
,
P.
Fleurat-Lessard
, and
P.
Sautet
,
J. Chem. Theory Comput.
9
,
5567
(
2013
).
13.
M.
Shiga
and
M.
Masia
,
J. Chem. Phys.
139
,
044120
(
2013
).
14.
M.
Shiga
and
M.
Masia
,
J. Chem. Phys.
139
,
144103
(
2013
).
15.
M. P.
Waller
,
S.
Kumbhar
, and
J.
Yang
,
ChemPhysChem
15
,
3218
(
2014
).
16.
A.
Warshel
,
Angew. Chem., Int. Ed.
53
,
10020
(
2014
).
17.
H. C.
Watanabe
,
T.
Kubař
, and
M.
Elstner
,
J. Chem. Theory Comput.
10
,
4242
(
2014
).
18.
X.
Lu
,
D.
Fang
,
S.
Ito
,
Y.
Okamoto
,
V.
Ovchinnikov
, and
Q.
Cui
,
Mol. Simul.
42
,
1056
(
2016
).
19.
M. J.
Field
,
J. Chem. Theory Comput.
13
,
2342
(
2017
).
20.
H.
Takahashi
,
H.
Kambe
, and
A.
Morita
,
J. Chem. Phys.
148
,
134119
(
2018
).
21.
U. N.
Morzan
,
D. J.
Alonso de Armiño
,
N. O.
Foglia
,
F.
Ramírez
,
M. C.
González Lebrero
,
D. A.
Scherlis
, and
D. A.
Estrin
,
Chem. Rev.
118
,
4071
(
2018
).
22.
H. C.
Watanabe
and
Q.
Cui
,
J. Chem. Theory Comput.
15
,
3917
(
2019
).
23.
F.
Libisch
,
C.
Huang
, and
E. A.
Carter
,
Acc. Chem. Res.
47
,
2768
(
2014
).
24.
C. R.
Jacob
and
J.
Neugebauer
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
325
(
2014
).
25.
M. E.
Fornace
,
J.
Lee
,
K.
Miyamoto
,
F. R.
Manby
, and
T. F.
Miller
,
J. Chem. Theory Comput.
11
,
568
(
2015
).
26.
V. V.
Rybkin
,
J. Chem. Theory Comput.
17
,
3995
(
2021
).
27.
P.
Sherwood
,
A. H.
de Vries
,
M. F.
Guest
,
G.
Schreckenbach
,
C. R. A.
Catlow
,
S. A.
French
,
A. A.
Sokol
,
S. T.
Bromley
,
W.
Thiel
,
A. J.
Turner
,
S.
Billeter
,
F.
Terstegen
,
S.
Thiel
,
J.
Kendrick
,
S. C.
Rogers
,
J.
Casci
,
M.
Watson
,
F.
King
,
E.
Karlsen
,
M.
Sjøvoll
,
A.
Fahmi
,
A.
Schäfer
, and
C.
Lennartz
,
J. Mol. Struct.: THEOCHEM
632
,
1
(
2003
).
28.
Y.
Zhang
,
Theor. Chem. Acc.
116
,
43
(
2006
).
29.
H.
Hu
and
W.
Yang
,
J. Mol. Struct.: THEOCHEM
898
,
17
(
2009
).
30.
E. M.
Sproviero
,
M. B.
Newcomer
,
J. A.
Gascón
,
E. R.
Batista
,
G. W.
Brudvig
, and
V. S.
Batista
,
Photosynth. Res.
102
,
455
(
2009
).
31.
S.
Difley
,
L.-P.
Wang
,
S.
Yeganeh
,
S. R.
Yost
, and
T. V.
Voorhis
,
Acc. Chem. Res.
43
,
995
(
2010
).
32.
E.
Brunk
and
U.
Rothlisberger
,
Chem. Rev.
115
,
6217
(
2015
).
33.
T. J.
Zuehlsdorff
and
C. M.
Isborn
,
Int. J. Quantum Chem.
119
,
e25719
(
2019
).
34.
M. S.
Gordon
,
D. G.
Fedorov
,
S. R.
Pruitt
, and
L. V.
Slipchenko
,
Chem. Rev.
112
,
632
(
2012
).
35.
M. S.
Gordon
,
Q. A.
Smith
,
P.
Xu
, and
L. V.
Slipchenko
,
Annu. Rev. Phys. Chem.
64
,
553
(
2013
).
36.
K.
Bolton
,
W. L.
Hase
, and
C.
Doubleday
,
J. Phys. Chem. B
103
,
3691
(
1999
).
37.
C. M.
Isborn
,
A. W.
Götz
,
M. A.
Clark
,
R. C.
Walker
, and
T. J.
Martínez
,
J. Chem. Theory Comput.
8
,
5092
(
2012
).
38.
J. R.
Casey
,
A.
Kahros
, and
B. J.
Schwartz
,
J. Phys. Chem. B
117
,
14173
(
2013
).
39.
L.
Turi
and
P. J.
Rossky
,
Chem. Rev.
112
,
5641
(
2012
).
40.
J. M.
Herbert
,
Phys. Chem. Chem. Phys.
21
,
20538
(
2019
).
41.
X.
Chen
and
S. E.
Bradforth
,
Annu. Rev. Phys. Chem.
59
,
203
(
2008
).
42.
E.
Lambros
,
F.
Lipparini
,
G. A.
Cisneros
, and
F.
Paesani
,
J. Chem. Theory Comput.
16
,
7462
(
2020
).
43.
D.
Beglov
and
B.
Roux
,
J. Chem. Phys.
100
,
9050
(
1994
).
44.
M.
Shiga
and
M.
Masia
,
Mol. Simul.
41
,
827
(
2015
).
45.
E. J.
Hart
and
J. W.
Boag
,
J. Am. Chem. Soc.
84
,
4090
(
1962
).
46.
L.
Turi
and
D.
Borgis
,
J. Chem. Phys.
117
,
6186
(
2002
).
47.
B.
Kirchhoff
,
E. Ö.
Jónsson
,
A. O.
Dohn
,
T.
Jacob
, and
H.
Jónsson
,
J. Chem. Theory Comput.
17
,
5863
(
2021
).
48.
Z.
Shen
,
S.
Peng
, and
W. J.
Glover
,
J. Chem. Phys.
155
,
224113
(
2021
).
49.
W. J.
Glover
and
B. J.
Schwartz
,
J. Chem. Theory Comput.
16
,
1263
(
2020
).
50.
D.
Case
,
I.
Ben-Shalom
,
S. R.
Brozell
,
D. S.
Cerutti
,
T.
Cheatham
,
V. W. D.
Cruzeiro
,
T.
Darden
,
R.
Duke
,
D.
Ghoreishi
,
M.
Gilson
,
H.
Gohlke
,
A.
Götz
,
D.
Greene
,
R.
Harris
,
N.
Homeyer
,
Y.
Huang
,
S.
Izadi
,
A.
Kovalenko
,
T.
Kurtzman
, and
P. A.
Kollman
, Amber 2018,
University of California
,
San Francisco
,
2018
.
51.
W. J.
Glover
and
B. J.
Schwartz
,
J. Chem. Theory Comput.
12
,
5117
(
2016
).
52.
W. J.
Glover
,
R. E.
Larsen
, and
B. J.
Schwartz
,
J. Chem. Phys.
129
,
164505
(
2008
).
53.
W. J.
Glover
,
J. R.
Casey
, and
B. J.
Schwartz
,
J. Chem. Theory Comput.
10
,
4661
(
2014
).
54.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
55.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
,
J. Chem. Phys.
76
,
637
(
1982
).
56.
K.
Neymeyr
,
Linear Algebra Appl.
322
,
61
(
2001
).
57.
V.
Hernandez
,
J. E.
Roman
, and
V.
Vidal
,
ACM Trans. Math. Software
31
,
351
(
2005
).
58.
R. P.
Feynman
,
Phys. Rev.
56
,
340
(
1939
).
59.
G. W.
Stewart
,
SIAM J. Matrix Anal. Appl.
23
,
601
(
2002
).
60.
L.
Turi
,
G.
Hantal
,
P. J.
Rossky
, and
D.
Borgis
,
J. Chem. Phys.
131
,
024119
(
2009
).
61.
M. A.
Thompson
and
G. K.
Schenter
,
J. Phys. Chem.
99
,
6374
(
1995
).
63.
J.
Kongsted
and
B.
Mennucci
,
J. Phys. Chem. A
111
,
9890
(
2007
).
64.
M. A.
Hagras
and
W. J.
Glover
,
J. Chem. Theory Comput.
14
,
2137
(
2018
).
65.

Consider QM/MM strings according to the above sequences. b1<aNQMimp implies that there exists some MM index on the left of some QM index. Then, between these indices, there must exist a consecutive MM-QM pair; otherwise, the string can only be of MM indices, which is unphysical.

Supplementary Material

You do not currently have access to this content.