Modeling nonadiabatic dynamics in complex molecular or condensed-phase systems has been challenging, especially for the long-time dynamics. In this work, we propose a time series machine learning scheme based on the hybrid convolutional neural network/long short-term memory (CNN-LSTM) framework for predicting the long-time quantum behavior, given only the short-time dynamics. This scheme takes advantage of both the powerful local feature extraction ability of CNN and the long-term global sequential pattern recognition ability of LSTM. With feature fusion of individually trained CNN-LSTM models for the quantum population and coherence dynamics, the proposed scheme is shown to have high accuracy and robustness in predicting the linearized semiclassical and symmetrical quasiclassical mapping dynamics as well as the mixed quantum-classical Liouville dynamics of various spin-boson models with learning time up to 0.3 ps. Furthermore, if the hybrid network has learned the dynamics of a system, this knowledge is transferable that could significantly enhance the accuracy in predicting the dynamics of a similar system. The hybrid CNN-LSTM network is thus believed to have high predictive power in forecasting the nonadiabatic dynamics in realistic charge and energy transfer processes in photoinduced energy conversion.

1.
D.
Xu
and
K.
Schulten
, “
Coupling of protein motion to electron transfer in a photosynthetic reaction center: Investigating the low temperature behavior in the framework of the spin-boson model
,”
Chem. Phys.
182
,
91
117
(
1994
).
2.
A.
Ishizaki
and
G. R.
Fleming
, “
Quantum coherence in photosynthetic light harvesting
,”
Annu. Rev. Condens. Matter Phys.
3
,
333
361
(
2012
).
3.
Y.
Zhao
and
W.
Liang
, “
Charge transfer in organic molecules for solar cells: Theoretical perspective
,”
Chem. Soc. Rev.
41
,
1075
1087
(
2012
).
4.
Y.
Tanimura
, “
Numerically ‘exact’ approach to open quantum dynamics: The hierarchical equations of motion (HEOM)
,”
J. Chem. Phys.
153
,
020901
(
2020
).
5.
D. E.
Makarov
and
N.
Makri
, “
Path integrals for dissipative systems by tensor multiplication. Condensed phase quantum dynamics for arbitrarily long time
,”
Chem. Phys. Lett.
221
,
482
491
(
1994
).
6.
H.
Wang
and
M.
Thoss
, “
Multilayer formulation of the multiconfiguration time-dependent Hartree theory
,”
J. Chem. Phys.
119
,
1289
1299
(
2003
).
7.
J.
Ren
,
Z.
Shuai
, and
G.
Kin-Lic Chan
, “
Time-dependent density matrix renormalization group algorithms for nearly exact absorption and fluorescence spectra of molecular aggregates at both zero and finite temperature
,”
J. Chem. Theory Comput.
14
,
5027
5039
(
2018
).
8.
S. M.
Greene
and
V. S.
Batista
, “
Tensor-train split-operator fourier transform (TT-SOFT) method: Multidimensional nonadiabatic quantum dynamics
,”
J. Chem. Theory Comput.
13
,
4034
4042
(
2017
).
9.
A. D.
McLachlan
, “
A variational solution of the time-dependent Schrodinger equation
,”
Mol. Phys.
8
,
39
44
(
1964
).
10.
J. C.
Tully
, “
Molecular dynamics with electronic transitions
,”
J. Chem. Phys.
93
,
1061
(
1990
).
11.
C. C.
Martens
and
J.-Y.
Fang
, “
Semiclassical-limit molecular dynamics on multiple electronic surfaces
,”
J. Chem. Phys.
106
,
4918
(
1997
).
12.
R.
Kapral
and
G.
Ciccotti
, “
Mixed quantum-classical dynamics
,”
J. Chem. Phys.
110
,
8919
(
1999
).
13.
D.
Mac Kernan
,
G.
Ciccotti
, and
R.
Kapral
, “
Trotter-based simulation of quantum-classical dynamics
,”
J. Phys. Chem. B
112
,
424
432
(
2008
).
14.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
, “
Semiclassical theory of electronically nonadiabatic dynamics: Results of a linearized approximation to the initial value representation
,”
J. Chem. Phys.
109
,
7064
(
1998
).
15.
X.
Gao
,
M. A. C.
Saller
,
Y.
Liu
,
A.
Kelly
,
J. O.
Richardson
, and
E.
Geva
, “
Benchmarking quasiclassical mapping Hamiltonian methods for simulating electronically nonadiabatic molecular dynamics
,”
J. Chem. Theory Comput.
16
,
2883
2895
(
2020
).
16.
M. A. C.
Saller
,
A.
Kelly
, and
J. O.
Richardson
, “
On the identity of the identity operator in nonadiabatic linearized semiclassical dynamics
,”
J. Chem. Phys.
150
,
071101
(
2019
).
17.
S. J.
Cotton
and
W. H.
Miller
, “
Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electronically non-adiabatic processes
,”
J. Chem. Phys.
139
,
234112
(
2013
).
18.
S. J.
Cotton
,
K.
Igumenshchev
, and
W. H.
Miller
, “
Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electron transfer
,”
J. Chem. Phys.
141
,
084104
(
2014
).
19.
H. D.
Meyer
and
W. H.
Miller
, “
A classical analog for electronic degrees of freedom in nonadiabatic collision processes
,”
J. Chem. Phys.
70
,
3214
3223
(
1979
).
20.
G.
Stock
and
M.
Thoss
, “
Semiclassical description of nonadiabatic quantum dynamics
,”
Phys. Rev. Lett.
78
,
578
581
(
1997
).
21.
S. J.
Cotton
and
W. H.
Miller
, “
The symmetrical quasi-classical model for electronically non-adiabatic processes applied to energy transfer dynamics in site-exciton models of light-harvesting complexes
,”
J. Chem. Theory Comput.
12
,
983
991
(
2016
).
22.
Z.
Hu
,
D.
Brian
, and
X.
Sun
, “
Multi-state harmonic models with globally shared bath for nonadiabatic dynamics in the condensed phase
,”
J. Chem. Phys.
155
,
124105
(
2021
).
23.
X.
Sun
and
E.
Geva
, “
Equilibrium Fermi’s golden rule charge transfer rate constants in the condensed phase: The linearized semiclassical method vs classical Marcus theory
,”
J. Phys. Chem. A
120
,
2976
2990
(
2016
).
24.
S.
Nakajima
, “
On quantum theory of transport phenomena: Steady diffusion
,”
Prog. Theor. Phys.
20
,
948
959
(
1958
).
25.
R.
Zwanzig
, “
Ensemble method in the theory of irreversibility
,”
J. Chem. Phys.
33
,
1338
1341
(
1960
).
26.
D.
Brian
and
X.
Sun
, “
Generalized quantum master equation: A tutorial review and recent advances
,”
Chin. J. Chem. Phys.
34
,
497
524
(
2020
).
27.
Q.
Shi
and
E.
Geva
, “
A new approach to calculating the memory kernel of the generalized quantum master equation for an arbitrary system–bath coupling
,”
J. Chem. Phys.
119
,
12063
(
2003
).
28.
J.
Cerrillo
and
J.
Cao
, “
Non-Markovian dynamical maps: Numerical processing of open quantum trajectories
,”
Phys. Rev. Lett.
112
,
110401
(
2014
).
29.
A. A.
Kananenka
,
C.-Y.
Hsieh
,
J.
Cao
, and
E.
Geva
, “
Accurate long-time mixed quantum-classical Liouville dynamics via the transfer tensor method
,”
J. Phys. Chem. Lett.
7
,
4809
4814
(
2016
).
30.
Y.
LeCun
,
B.
Boser
,
J. S.
Denker
,
D.
Henderson
,
R. E.
Howard
,
W.
Hubbard
, and
L. D.
Jackel
, “
Backpropagation applied to handwritten zip code recognition
,”
Neural Comput.
1
,
541
551
(
1989
).
31.
Y.
LeCun
,
L.
Bottou
,
Y.
Bengio
, and
P.
Haffner
, “
Gradient-based learning applied to document recognition
,”
Proc. IEEE
86
,
2278
2323
(
1998
).
32.
R.
Collobert
and
J.
Weston
, “
A unified architecture for natural language processing: Deep neural networks with multitask learning
,” in
Proceedings of the 25th International Conference on Machine Learning, ICML ’08
(
Association for Computing Machinery
,
New York
,
2008
), pp.
160
167
.
33.
J. R.
Cendagorta
,
H.
Shen
,
Z.
Bačić
, and
M. E.
Tuckerman
, “
Enhanced sampling path integral methods using neural network potential energy surfaces with application to diffusion in hydrogen hydrates
,”
Adv. Theory Simul.
4
,
2000258
(
2021
).
34.
Y.
Wen
,
Y.
Liu
,
B.
Yan
,
T.
Gaudin
,
J.
Ma
, and
H.
Ma
, “
Simultaneous optimization of donor/acceptor pairs and device specifications for nonfullerene organic solar cells using a QSPR model with morphological descriptors
,”
J. Phys. Chem. Lett.
12
,
4980
4986
(
2021
).
35.
K.
Beer
,
D.
Bondarenko
,
T.
Farrelly
,
T. J.
Osborne
,
R.
Salzmann
,
D.
Scheiermann
, and
R.
Wolf
, “
Training deep quantum neural networks
,”
Nat. Commun.
11
,
808
(
2020
).
36.
M.
Kulichenko
,
J. S.
Smith
,
B.
Nebgen
,
Y. W.
Li
,
N.
Fedik
,
A. I.
Boldyrev
,
N.
Lubbers
,
K.
Barros
, and
S.
Tretiak
, “
The rise of neural networks for materials and chemical dynamics
,”
J. Phys. Chem. Lett.
12
,
6227
6243
(
2021
).
37.
S.
Hochreiter
and
J.
Schmidhuber
, “
Long short-term memory
,”
Neural Comput.
9
,
1735
1780
(
1997
).
38.
Y.
Yu
,
X.
Si
,
C.
Hu
, and
J.
Zhang
, “
A review of recurrent neural networks: LSTM cells and network architectures
,”
Neural Comput.
31
,
1235
1270
(
2019
).
39.
L. E.
Herrera Rodríguez
and
A. A.
Kananenka
, “
Convolutional neural networks for long time dissipative quantum dynamics
,”
J. Phys. Chem. Lett.
12
,
2476
2483
(
2021
).
40.
W.-K.
Chen
,
X.-Y.
Liu
,
W.-H.
Fang
,
P. O.
Dral
, and
G.
Cui
, “
Deep learning for nonadiabatic excited-state dynamics
,”
J. Phys. Chem. Lett.
9
,
6702
6708
(
2018
).
41.
B.
Wang
,
W.
Chu
,
A.
Tkatchenko
, and
O. V.
Prezhdo
, “
Interpolating nonadiabatic molecular dynamics Hamiltonian with artificial neural networks
,”
J. Phys. Chem. Lett.
12
,
6070
6077
(
2021
).
42.
S.
Ueno
and
Y.
Tanimura
, “
Modeling and simulating the excited-state dynamics of a system with condensed phases: A machine learning approach
,”
J. Chem. Theory Comput.
17
,
3618
3628
(
2021
).
43.
S.
Bandyopadhyay
,
Z.
Huang
,
K.
Sun
, and
Y.
Zhao
, “
Applications of neural networks to the simulation of dynamics of open quantum systems
,”
Chem. Phys.
515
,
272
278
(
2018
).
44.
B.
Yang
,
B.
He
,
J.
Wan
,
S.
Kubal
, and
Y.
Zhao
, “
Applications of neural networks to dynamics simulation of Landau-Zener transitions
,”
Chem. Phys.
528
,
110509
(
2020
).
45.
L.
Gao
,
K.
Sun
,
H.
Zheng
, and
Y.
Zhao
, “
A deep-learning approach to the dynamics of Landau–Zenner transitions
,”
Adv. Theory Simul.
4
,
2100083
(
2021
).
46.
K.
Lin
,
J.
Peng
,
F. L.
Gu
, and
Z.
Lan
, “
Simulation of open quantum dynamics with bootstrap-based long short-term memory recurrent neural network
,”
J. Phys. Chem. Lett.
12
,
10225
10234
(
2021
).
47.
T.-Y.
Kim
and
S.-B.
Cho
, “
Predicting residential energy consumption using CNN-LSTM neural networks
,”
Energy
182
,
72
81
(
2019
).
48.
K.
He
,
X.
Zhang
,
S.
Ren
, and
J.
Sun
, “
Deep residual learning for image recognition
,” in
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(
IEEE
,
2016
), pp.
770
778
.
49.
A.
Ullah
and
P. O.
Dral
, “
Speeding up quantum dissipative dynamics of open systems with kernel methods
,” chemRxiv:-2021-fgnrk-v2 (
2021
).
50.
M. A. C.
Saller
,
A.
Kelly
, and
J. O.
Richardson
, “
Improved population operators for multi-state nonadiabatic dynamics with the mixed quantum-classical mapping approach
,”
Faraday Discuss.
221
,
150
167
(
2020
).
51.
Q.
Shi
and
E.
Geva
, “
Vibrational energy relaxation in liquid oxygen from a semiclassical molecular dynamics simulation
,”
J. Phys. Chem. A
107
,
9070
9078
(
2003
).
52.
E.
Mulvihill
,
A.
Schubert
,
X.
Sun
,
B. D.
Dunietz
, and
E.
Geva
, “
A modified approach for simulating electronically nonadiabatic dynamics via the generalized quantum master equation
,”
J. Chem. Phys.
150
,
034101
(
2019
).
53.
X.
Gao
and
E.
Geva
, “
A nonperturbative methodology for simulating multidimensional spectra of multiexcitonic molecular systems via quasiclassical mapping Hamiltonian methods
,”
J. Chem. Theory Comput.
16
,
6491
6502
(
2020
).
54.
X.
Gao
,
Y.
Lai
, and
E.
Geva
, “
Simulating absorption spectra of multiexcitonic systems via quasiclassical mapping Hamiltonian methods
,”
J. Chem. Theory Comput.
16
,
6465
6480
(
2020
).
55.
Y.
Liu
,
X.
Gao
,
Y.
Lai
,
E.
Mulvihill
, and
E.
Geva
, “
Electronic dynamics through conical intersections via quasiclassical mapping Hamiltonian methods
,”
J. Chem. Theory Comput.
16
,
4479
4488
(
2020
).
56.
M. A. C.
Saller
,
A.
Kelly
, and
E.
Geva
, “
Benchmarking quasiclassical mapping Hamiltonian methods for simulating cavity-modified molecular dynamics
,”
J. Phys. Chem. Lett.
12
,
3163
3170
(
2021
).
57.
W. H.
Miller
and
S. J.
Cotton
, “
Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a aymmetrical quasi-classical approach to the full electronic density matrix
,”
J. Chem. Phys.
145
,
081102
(
2016
).
58.
S. J.
Cotton
and
W. H.
Miller
, “
A new symmetrical quasi-classical model for electronically non-adiabatic processes: Application to the case of weak non-adiabatic coupling
,”
J. Chem. Phys.
145
,
144108
(
2016
).
59.
S. J.
Cotton
,
R.
Liang
, and
W. H.
Miller
, “
On the adiabatic representation of Meyer-Miller electronic-nuclear dynamics
,”
J. Chem. Phys.
147
,
064112
(
2017
).
60.
S. J.
Cotton
and
W. H.
Miller
, “
A symmetrical quasi-classical windowing model for the molecular dynamics treatment of non-adiabatic processes involving many electronic states
,”
J. Chem. Phys.
150
,
104101
(
2019
).
61.
U.
Weiss
,
Quantum Dissipative Systems
(
World Scientific
,
London
,
2012
).
62.
X.
He
and
J.
Liu
, “
A new perspective for nonadiabatic dynamics with phase space mapping models
,”
J. Chem. Phys.
151
,
024105
(
2019
).
63.
P. L.
Walters
,
T. C.
Allen
, and
N.
Makri
, “
Direct determination of discrete harmonic bath parameters from molecular dynamics simulations
,”
J. Comput. Chem.
38
,
110
115
(
2017
).
64.
Z.
Tong
,
X.
Gao
,
M. S.
Cheung
,
B. D.
Dunietz
,
E.
Geva
, and
X.
Sun
, “
Charge transfer rate constants for the carotenoid-porphyrin-C60 molecular triad dissolved in tetrahydrofuran: The spin-boson model vs the linearized semiclassical approximation
,”
J. Chem. Phys.
153
,
044105
(
2020
).
65.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 [cs.LG] (
2017
).
66.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
Y.
Jia
,
R.
Jozefowicz
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Mané
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
M.
Schuster
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Viégas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, TensorFlow: Large-scale machine learning on heterogeneous systems, 2015, software available from tensorflow.org.
67.
J.
Liu
,
K.
Sun
,
X.
Wang
, and
Y.
Zhao
, “
Quantifying non-Markovianity for a chromophore–qubit pair in a super-Ohmic bath
,”
Phys. Chem. Chem. Phys.
17
,
8087
8096
(
2015
).
You do not currently have access to this content.