Interfaces formed between monolayer transition metal dichalcogenides and (metallo)phthalocyanine molecules are promising in energy applications and provide a platform for studying mixed-dimensional molecule-semiconductor heterostructures in general. An accurate characterization of the frontier energy level alignment at these interfaces is key in the fundamental understanding of the charge transfer dynamics between the two photon absorbers. Here, we employ the first-principles substrate screening GW approach to quantitatively characterize the quasiparticle electronic structure of a series of interfaces: metal-free phthalocyanine (H2Pc) adsorbed on monolayer MX2 (M = Mo, W; X = S, Se) and zinc phthalocyanine (ZnPc) adsorbed on MoX2 (X = S, Se). Furthermore, we reveal the dielectric screening effect of the commonly used α-quartz (SiO2) substrate on the H2Pc:MoS2 interface using the dielectric embedding GW approach. Our calculations furnish a systematic set of GW results for these interfaces, providing the structure–property relationship across a series of similar systems and benchmarks for future experimental and theoretical studies.

1.
T.
Ihn
,
Semiconductor Nanostructures: Quantum States and Electronic Transport
, 1st ed. (
Oxford University Press
,
2010
).
2.
D.
Jariwala
,
T. J.
Marks
, and
M. C.
Hersam
, “
Mixed-dimensional van der Waals heterostructures
,”
Nat. Mater.
16
,
170
181
(
2017
).
3.
S. H.
Amsterdam
,
T. K.
Stanev
,
Q.
Zhou
,
A. J.-T.
Lou
,
H.
Bergeron
,
P.
Darancet
,
M. C.
Hersam
,
N. P.
Stern
, and
T. J.
Marks
, “
Electronic coupling in metallophthalocyanine-transition metal dichalcogenide mixed-dimensional heterojunctions
,”
ACS Nano
13
,
4183
4190
(
2019
).
4.
Y. L.
Huang
,
Y. J.
Zheng
,
Z.
Song
,
D.
Chi
,
A. T. S.
Wee
, and
S. Y.
Quek
, “
The organic-2D transition metal dichalcogenide heterointerface
,”
Chem. Soc. Rev.
47
,
3241
3264
(
2018
).
5.
H.
Wang
,
C.
Li
,
P.
Fang
,
Z.
Zhang
, and
J. Z.
Zhang
, “
Synthesis, properties, and optoelectronic applications of two-dimensional MoS2 and MoS2-based heterostructures
,”
Chem. Soc. Rev.
47
,
6101
6127
(
2018
).
6.
J.
Sun
,
Y.
Choi
,
Y. J.
Choi
,
S.
Kim
,
J.-H.
Park
,
S.
Lee
, and
J. H.
Cho
, “
2D-organic hybrid heterostructures for optoelectronic applications
,”
Adv. Mater.
31
,
1803831
(
2019
).
7.
J.
Choi
,
H.
Zhang
, and
J. H.
Choi
, “
Modulating optoelectronic properties of two-dimensional transition metal dichalcogenide semiconductors by photoinduced charge transfer
,”
ACS Nano
10
,
1671
1680
(
2016
).
8.
D.
Jariwala
,
S. L.
Howell
,
K.-S.
Chen
,
J.
Kang
,
V. K.
Sangwan
,
S. A.
Filippone
,
R.
Turrisi
,
T. J.
Marks
,
L. J.
Lauhon
, and
M. C.
Hersam
, “
Hybrid, gate-tunable, van der Waals p-n heterojunctions from pentacene and MoS2
,”
Nano Lett.
16
,
497
503
(
2016
).
9.
J.
Yu
,
S.
Seo
,
Y.
Luo
,
Y.
Sun
,
S.
Oh
,
C. T. K.
Nguyen
,
C.
Seo
,
J.-H.
Kim
,
J.
Kim
, and
H.
Lee
, “
Efficient and stable solar hydrogen generation of hydrophilic rhenium-disulfide-based photocatalysts via chemically controlled charge transfer paths
,”
ACS Nano
14
,
1715
1726
(
2020
).
10.
X.
Ling
,
W.
Fang
,
Y.-H.
Lee
,
P. T.
Araujo
,
X.
Zhang
,
J. F.
Rodriguez-Nieva
,
Y.
Lin
,
J.
Zhang
,
J.
Kong
, and
M. S.
Dresselhaus
, “
Raman enhancement effect on two-dimensional layered materials: Graphene, h-BN and MoS2
,”
Nano Lett.
14
,
3033
3040
(
2014
).
11.
T. G.
Gopakumar
,
M.
Lackinger
,
M.
Hackert
,
F.
Müller
, and
M.
Hietschold
, “
Adsorption of palladium phthalocyanine on graphite: STM and LEED study
,”
J. Phys. Chem. B
108
,
7839
7843
(
2004
).
12.
J.
Mack
and
N.
Kobayashi
, “
Low symmetry phthalocyanines and their analogues
,”
Chem. Rev.
111
,
281
321
(
2011
).
13.
J. M.
Gottfried
, “
Surface chemistry of porphyrins and phthalocyanines
,”
Surf. Sci. Rep.
70
,
259
379
(
2015
).
14.
O. I.
Arillo-Flores
,
M. M.
Fadlallah
,
C.
Schuster
,
U.
Eckern
, and
A. H.
Romero
, “
Magnetic, electronic, and vibrational properties of metal and fluorinated metal phthalocyanines
,”
Phys. Rev. B
87
,
165115
(
2013
).
15.
Z.-F.
Liu
,
S.
Wei
,
H.
Yoon
,
O.
Adak
,
I.
Ponce
,
Y.
Jiang
,
W.-D.
Jang
,
L. M.
Campos
,
L.
Venkataraman
, and
J. B.
Neaton
, “
Control of single-molecule junction conductance of porphyrins via a transition-metal center
,”
Nano Lett.
14
,
5365
5370
(
2014
).
16.
Q.
Zhou
,
Z.-F.
Liu
,
T. J.
Marks
, and
P.
Darancet
, “
Electronic structure of metallophthalocyanines, MPc (M = Fe, Co, Ni, Cu, Zn, Mg) and fluorinated MPc
,”
J. Phys. Chem. A
125
,
4055
4061
(
2021
).
17.
P.
Choudhury
,
L.
Ravavarapu
,
R.
Dekle
, and
S.
Chowdhury
, “
Modulating electronic and optical properties of monolayer MoS2 using nonbonded phthalocyanine molecules
,”
J. Phys. Chem. C
121
,
2959
2967
(
2017
).
18.
T. R.
Kafle
,
B.
Kattel
,
P.
Yao
,
P.
Zereshki
,
H.
Zhao
, and
W.-L.
Chan
, “
Effect of the interfacial energy landscape on photoinduced charge generation at the ZnPc/MoS2 interface
,”
J. Am. Chem. Soc.
141
,
11328
11336
(
2019
).
19.
S.
Padgaonkar
,
S. H.
Amsterdam
,
H.
Bergeron
,
K.
Su
,
T. J.
Marks
,
M. C.
Hersam
, and
E. A.
Weiss
, “
Molecular-orientation-dependent interfacial charge transfer in phthalocyanine/MoS2 mixed-dimensional heterojunctions
,”
J. Phys. Chem. C
123
,
13337
13343
(
2019
).
20.
H.
Ahn
,
Y.-C.
Huang
,
C.-W.
Lin
,
Y.-L.
Chiu
,
E.-C.
Lin
,
Y.-Y.
Lai
, and
Y.-H.
Lee
, “
Efficient defect healing of transition metal dichalcogenides by metallophthalocyanine
,”
ACS Appl. Mater. Interfaces
10
,
29145
29152
(
2018
).
21.
L.
Hedin
, “
New method for calculating the one-particle Green’s function with application to the electron-gas problem
,”
Phys. Rev.
139
,
A796
A823
(
1965
).
22.
G.
Strinati
,
H. J.
Mattausch
, and
W.
Hanke
, “
Dynamical aspects of correlation corrections in a covalent crystal
,”
Phys. Rev. B
25
,
2867
2888
(
1982
).
23.
M. S.
Hybertsen
and
S. G.
Louie
, “
Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies
,”
Phys. Rev. B
34
,
5390
5413
(
1986
).
24.
B. D.
Malone
and
M. L.
Cohen
, “
Quasiparticle semiconductor band structures including spin-orbit interactions
,”
J. Phys.: Condens. Matter
25
,
105503
(
2013
).
25.
N.
Kharche
,
J. T.
Muckerman
, and
M. S.
Hybertsen
, “
First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces
,”
Phys. Rev. Lett.
113
,
176802
(
2014
).
26.
M. J.
van Setten
,
F.
Caruso
,
S.
Sharifzadeh
,
X.
Ren
,
M.
Scheffler
,
F.
Liu
,
J.
Lischner
,
L.
Lin
,
J. R.
Deslippe
,
S. G.
Louie
,
C.
Yang
,
F.
Weigend
,
J. B.
Neaton
,
F.
Evers
, and
P.
Rinke
, “
GW100: Benchmarking G0W0 for molecular systems
,”
J. Chem. Theory Comput.
11
,
5665
5687
(
2015
).
27.
J. P.
Perdew
,
R. G.
Parr
,
M.
Levy
, and
J. L.
Balduz
, “
Density-functional theory for fractional particle number: Derivative discontinuities of the energy
,”
Phys. Rev. Lett.
49
,
1691
1694
(
1982
).
28.
W.
Yang
,
A. J.
Cohen
, and
P.
Mori-Sánchez
, “
Derivative discontinuity, bandgap and lowest unoccupied molecular orbital in density functional theory
,”
J. Chem. Phys.
136
,
204111
(
2012
).
29.
Y.
Yin
,
P.
Miao
,
Y.
Zhang
,
J.
Han
,
X.
Zhang
,
Y.
Gong
,
L.
Gu
,
C.
Xu
,
T.
Yao
,
P.
Xu
,
Y.
Wang
,
B.
Song
, and
S.
Jin
, “
Significantly increased Raman enhancement on MoX2 (X = S, Se) monolayers upon phase transition
,”
Adv. Funct. Mater.
27
,
1606694
(
2017
).
30.
X.-Y.
Liu
,
X.-Y.
Xie
,
W.-H.
Fang
, and
G.
Cui
, “
Theoretical insights into interfacial electron transfer between zinc phthalocyanine and molybdenum disulfide
,”
J. Phys. Chem. A
122
,
9587
9596
(
2018
).
31.
S.
Haldar
,
S.
Bhandary
,
H.
Vovusha
, and
B.
Sanyal
, “
Comparative study of electronic and magnetic properties of iron and cobalt phthalocyanine molecules physisorbed on two-dimensional MoS2 and graphene
,”
Phys. Rev. B
98
,
085440
(
2018
).
32.
J. B.
Neaton
,
M. S.
Hybertsen
, and
S. G.
Louie
, “
Renormalization of molecular electronic levels at metal-molecule interfaces
,”
Phys. Rev. Lett.
97
,
216405
(
2006
).
33.
K. S.
Thygesen
and
A.
Rubio
, “
Renormalization of molecular quasiparticle levels at metal-molecule interfaces: Trends across binding regimes
,”
Phys. Rev. Lett.
102
,
046802
(
2009
).
34.
Z.-F.
Liu
,
F. H.
da Jornada
,
S. G.
Louie
, and
J. B.
Neaton
, “
Accelerating GW-based energy level alignment calculations for molecule-metal interfaces using a substrate screening approach
,”
J. Chem. Theory Comput.
15
,
4218
4227
(
2019
).
35.
M. M.
Ugeda
,
A. J.
Bradley
,
S.-F.
Shi
,
F. H.
da Jornada
,
Y.
Zhang
,
D. Y.
Qiu
,
W.
Ruan
,
S.-K.
Mo
,
Z.
Hussain
,
Z.-X.
Shen
,
F.
Wang
,
S. G.
Louie
, and
M. F.
Crommie
, “
Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor
,”
Nat. Mater.
13
,
1091
1095
(
2014
).
36.
F.
Xuan
,
Y.
Chen
, and
S. Y.
Quek
, “
Quasiparticle levels at large interface systems from many-body perturbation theory: The XAF-GW method
,”
J. Chem. Theory Comput.
15
,
3824
3835
(
2019
).
37.
O.
Adeniran
,
S.
Refaely-Abramson
, and
Z.-F.
Liu
, “
Layer-dependent quasiparticle electronic structure of the P3HT:PCBM interface from a first-principles substrate screening GW approach
,”
J. Phys. Chem. C
124
,
13592
13601
(
2020
).
38.
L.
Shunak
,
O.
Adeniran
,
G.
Voscoboynik
,
Z.-F.
Liu
, and
S.
Refaely-Abramson
, “
Exciton modulation in perylene-based molecular crystals upon formation of a metal-organic interface from many-body perturbation theory
,”
Front. Chem.
9
,
743391
(
2021
).
39.
J.
Pak
,
J.
Jang
,
K.
Cho
,
T.-Y.
Kim
,
J.-K.
Kim
,
Y.
Song
,
W.-K.
Hong
,
M.
Min
,
H.
Lee
, and
T.
Lee
, “
Enhancement of photodetection characteristics of MoS2 field effect transistors using surface treatment with copper phthalocyanine
,”
Nanoscale
7
,
18780
18788
(
2015
).
40.
G.
Ghimire
,
S.
Adhikari
,
S. G.
Jo
,
H.
Kim
,
J.
Jiang
,
J.
Joo
, and
J.
Kim
, “
Local enhancement of exciton emission of monolayer MoS2 by copper phthalocyanine nanoparticles
,”
J. Phys. Chem. C
122
,
6794
6800
(
2018
).
41.
N.
Mutz
,
S.
Park
,
T.
Schultz
,
S.
Sadofev
,
S.
Dalgleish
,
L.
Reissig
,
N.
Koch
,
E. J. W.
List-Kratochvil
, and
S.
Blumstengel
, “
Excited-state charge transfer enabling MoS2/phthalocyanine photodetectors with extended spectral sensitivity
,”
J. Phys. Chem. C
124
,
2837
2843
(
2020
).
42.
Y. J.
Zheng
,
Y. L.
Huang
,
Y.
Chen
,
W.
Zhao
,
G.
Eda
,
C. D.
Spataru
,
W.
Zhang
,
Y.-H.
Chang
,
L.-J.
Li
,
D.
Chi
,
S. Y.
Quek
, and
A. T. S.
Wee
, “
Heterointerface screening effects between organic monolayers and monolayer transition metal dichalcogenides
,”
ACS Nano
10
,
2476
2484
(
2016
).
43.
N.
Zibouche
,
M.
Schlipf
, and
F.
Giustino
, “
GW band structure of monolayer MoS2 using the SternheimerGW method and effect of dielectric environment
,”
Phys. Rev. B
103
,
125401
(
2021
).
44.
J.
Ryou
,
Y.-S.
Kim
,
K. C.
Santosh
, and
K.
Cho
, “
Monolayer MoS2 bandgap modulation by dielectric environments and tunable bandgap transistors
,”
Sci. Rep.
6
,
29184
(
2016
).
45.
D. Y.
Qiu
,
F. H.
da Jornada
, and
S. G.
Louie
, “
Environmental screening effects in 2D materials: Renormalization of the bandgap, electronic structure, and optical spectra of few-layer black phosphorus
,”
Nano Lett.
17
,
4706
4712
(
2017
).
46.
Z.-F.
Liu
, “
Dielectric embedding GW for weakly coupled molecule-metal interfaces
,”
J. Chem. Phys.
152
,
054103
(
2020
).
47.
K.
Berland
and
P.
Hyldgaard
, “
Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional
,”
Phys. Rev. B
89
,
035412
(
2014
).
48.
M.
Schlipf
and
F.
Gygi
, “
Optimization algorithm for the generation of ONCV pseudopotentials
,”
Comput. Phys. Commun.
196
,
36
44
(
2015
).
49.
D. R.
Hamann
, “
Optimized norm-conserving Vanderbilt pseudopotentials
,”
Phys. Rev. B
88
,
085117
(
2013
).
50.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
51.
N.
Wakabayashi
,
H. G.
Smith
, and
R. M.
Nicklow
, “
Lattice dynamics of hexagonal MoS2 studied by neutron scattering
,”
Phys. Rev. B
12
,
659
663
(
1975
).
52.
P. B.
James
and
M. T.
Lavik
, “
The crystal structure of MoSe2
,”
Acta Crystallogr.
16
,
1183
(
1963
).
53.
W. J.
Schutte
,
J. L.
De Boer
, and
F.
Jellinek
, “
Crystal structures of tungsten disulfide and diselenide
,”
J. Solid State Chem.
70
,
207
209
(
1987
).
54.
K.
Ulman
and
S. Y.
Quek
, “
Organic-2D material heterostructures: A promising platform for exciton condensation and multiplication
,”
Nano Lett.
21
,
8888
8894
(
2021
).
55.
K.
Momma
and
F.
Izumi
, “
VESTA: A three-dimensional visualization system for electronic and structural analysis
,”
J. Appl. Crystallogr.
41
,
653
658
(
2008
).
56.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
57.
S.
Ismail-Beigi
, “
Truncation of periodic image interactions for confined systems
,”
Phys. Rev. B
73
,
233103
(
2006
).
58.
J.
Deslippe
,
G.
Samsonidze
,
M.
Jain
,
M. L.
Cohen
, and
S. G.
Louie
, “
Coulomb-hole summations and energies for GW calculations with limited number of empty orbitals: A modified static remainder approach
,”
Phys. Rev. B
87
,
165124
(
2013
).
59.
J.
Deslippe
,
G.
Samsonidze
,
D. A.
Strubbe
,
M.
Jain
,
M. L.
Cohen
, and
S. G.
Louie
, “
BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures
,”
Comput. Phys. Commun.
183
,
1269
1289
(
2012
).
60.
A.
Ramasubramaniam
, “
Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides
,”
Phys. Rev. B
86
,
115409
(
2012
).
61.
I.
Tamblyn
,
P.
Darancet
,
S. Y.
Quek
,
S. A.
Bonev
, and
J. B.
Neaton
, “
Electronic energy level alignment at metal-molecule interfaces with a GW approach
,”
Phys. Rev. B
84
,
201402
(
2011
).
62.
Y.
Chen
,
I.
Tamblyn
, and
S. Y.
Quek
, “
Energy level alignment at hybridized organic–metal interfaces: The role of many-electron effects
,”
J. Phys. Chem. C
121
,
13125
13134
(
2017
).
63.
H.
Shi
,
H.
Pan
,
Y.-W.
Zhang
, and
B. I.
Yakobson
, “
Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2
,”
Phys. Rev. B
87
,
155304
(
2013
).
64.
F. H.
da Jornada
,
D. Y.
Qiu
, and
S. G.
Louie
, “
Nonuniform sampling schemes of the Brillouin zone for many-electron perturbation-theory calculations in reduced dimensionality
,”
Phys. Rev. B
95
,
035109
(
2017
).
65.
Q.
Zhou
,
Z.-F.
Liu
,
T. J.
Marks
, and
P.
Darancet
, “
Range-separated hybrid functionals for mixed-dimensional heterojunctions: Application to phthalocyanines/MoS2
,”
APL Mater.
(in press) (
2021
).
66.
X.
Blase
,
C.
Attaccalite
, and
V.
Olevano
, “
First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications
,”
Phys. Rev. B
83
,
115103
(
2011
).
67.
H.
Zhang
,
J.
Ji
,
A. A.
Gonzalez
, and
J. H.
Choi
, “
Tailoring photoelectrochemical properties of semiconducting transition metal dichalcogenide nanolayers with porphyrin functionalization
,”
J. Mater. Chem. C
5
,
11233
11238
(
2017
).
68.
E. P.
Nguyen
,
B. J.
Carey
,
C. J.
Harrison
,
P.
Atkin
,
K. J.
Berean
,
E.
Della Gaspera
,
J. Z.
Ou
,
R. B.
Kaner
,
K.
Kalantar-zadeh
, and
T.
Daeneke
, “
Excitation dependent bidirectional electron transfer in phthalocyanine-functionalised MoS2 nanosheets
,”
Nanoscale
8
,
16276
16283
(
2016
).
69.
A.
Raja
,
A.
Chaves
,
J.
Yu
,
G.
Arefe
,
H. M.
Hill
,
A. F.
Rigosi
,
T. C.
Berkelbach
,
P.
Nagler
,
C.
Schüller
,
T.
Korn
,
C.
Nuckolls
,
J.
Hone
,
L. E.
Brus
,
T. F.
Heinz
,
D. R.
Reichman
, and
A.
Chernikov
, “
Coulomb engineering of the bandgap and excitons in two-dimensional materials
,”
Nat. Commun.
8
,
15251
(
2017
).
70.
F.
Tran
and
P.
Blaha
, “
Importance of the kinetic energy density for band gap calculations in solids with density functional theory
,”
J. Phys. Chem. A
121
,
3318
3325
(
2017
).
71.
H.-J.
Sung
,
D.-H.
Choe
, and
K. J.
Chang
, “
The effects of surface polarity and dangling bonds on the electronic properties of monolayer and bilayer MoS2 on α-quartz
,”
New J. Phys.
16
,
113055
(
2014
).
72.
V. V.
Afanas’ev
,
D.
Chiappe
,
M.
Perucchini
,
M.
Houssa
,
C.
Huyghebaert
,
I.
Radu
, and
A.
Stesmans
, “
Impact of MoS2 layer transfer on electrostatics of MoS2/SiO2 interface
,”
Nanotechnology
30
,
055702
(
2019
).
73.
W.
Chen
and
A.
Pasquarello
, “
Correspondence of defect energy levels in hybrid density functional theory and many-body perturbation theory
,”
Phys. Rev. B
88
,
115104
(
2013
).
You do not currently have access to this content.