Electronic spectra are measured for mass-selected C2n+(n = 6–14) clusters over the visible and near-infrared spectral range through resonance enhanced photodissociation of clusters tagged with N2 molecules in a cryogenic ion trap. The carbon cluster cations are generated through laser ablation of a graphite disk and can be selected according to their collision cross section with He buffer gas and their mass prior to being trapped and spectroscopically probed. The data suggest that the C2n+(n = 6–14) clusters have monocyclic structures with bicyclic structures becoming more prevalent for C22+ and larger clusters. The C2n+ electronic spectra are dominated by an origin transition that shifts linearly to a longer wavelength with the number of carbon atoms and associated progressions involving excitation of ring deformation vibrational modes. Bands for C12+, C16+, C20+, C24+, and C28+ are relatively broad, possibly due to rapid non-radiative decay from the excited state, whereas bands for C14+, C18+, C22+, and C26+ are narrower, consistent with slower non-radiative deactivation.

1.
O.
Hahn
,
F.
Strassmann
,
J.
Mattauch
, and
H.
Ewald
, “
Hat in früheren Erdperioden ein radioaktives Cäsium existiert? Barium und Strontium aus Pollucit
,”
Naturwissenschaften
30
,
541
542
(
1942
).
2.
W.
Weltner
and
R. J.
Van Zee
, “
Carbon molecules, ions, and clusters
,”
Chem. Rev.
89
,
1713
1747
(
1989
).
3.
A.
Van Orden
and
R. J.
Saykally
, “
Small carbon clusters: Spectroscopy, structure, and energetics
,”
Chem. Rev.
98
,
2313
2357
(
1998
).
4.
G.
von Helden
,
M. T.
Hsu
,
N.
Gotts
, and
M. T.
Bowers
, “
Carbon cluster cations with up to 84 atoms: Structures, formation mechanism, and reactivity
,”
J. Phys. Chem.
97
,
8182
8192
(
1993
).
5.
D. K.
Bohme
and
S.
Wlodek
, “
Hydrogenation of carbon-cluster cations with molecular hydrogen: Implications for the growth of carbon-cluster molecules
,”
Int. J. Mass Spectrom. Ion Processes
102
,
133
149
(
1990
).
6.
S. W.
McElvany
,
B. I.
Dunlap
, and
A.
O’Keefe
, “
Ion molecule reactions of carbon cluster ions with D2 and O2
,”
J. Chem. Phys.
86
,
715
725
(
1998
).
7.
K.
Koyasu
,
T.
Ohtaki
,
J.
Bing
,
K.
Takahashi
, and
F.
Misaizu
, “
Even-odd product variation of the Cn+ + D2 (n = 4–9) reaction: Complexity of the linear carbon cation electronic states
.”
Phys. Chem. Chem. Phys.
17
,
24810
24819
(
2015
).
8.
J. R.
Heath
,
Q.
Zhang
,
S. C.
O’Brien
,
R. F.
Curl
,
H. W.
Kroto
, and
R. E.
Smalley
, “
The formation of long carbon chain molecules during laser vaporization of graphite
,”
J. Am. Chem. Soc.
109
,
359
363
(
1987
).
9.
S. W.
McElvany
, “
Reactions of carbon cluster ions with small hydrocarbons
,”
J. Chem. Phys.
89
,
2063
2075
(
1998
).
10.
K.
Koyasu
,
T.
Ohtaki
,
N.
Hori
, and
F.
Misaizu
, “
Isomer-resolved dissociation of small carbon cluster cations, C7+C10+
,”
Chem. Phys. Lett.
523
,
54
59
(
2012
).
11.
R.
Moriyama
,
T.
Ohtaki
,
J.
Hosoya
,
K.
Koyasu
, and
F.
Misaizu
, “
Isomer-separated photodissociation of large sized silicon and carbon cluster ions: Drift tube experiment combined with a tandem reflectron mass spectrometer for Si24+ - Si27+ and C32+-C38+
,”
Eur. Phys. J. D
67
,
13
(
2013
).
12.
M. G.
Giuffreda
,
M. S.
Deleuze
, and
J.-P.
François
, “
Structural, rotational, vibrational, and electronic properties of ionized carbon clusters Cn+ (n = 4–19)
,”
J. Phys. Chem. A
103
,
5137
5151
(
1999
).
13.
J.
Fulara
,
E.
Riaplov
,
A.
Batalov
,
I.
Shnitko
, and
J. P.
Maier
, “
Electronic and infrared absorption spectra of linear and cyclic C6+ in a neon matrix
,”
J. Chem. Phys.
120
,
7520
7525
(
2004
).
14.
J.
Fulara
,
I.
Shnitko
,
A.
Batalov
, and
J. P.
Maier
, “
Electronic absorption spectra of linear and cyclic Cn+ n = 7–9 in a neon matrix
.”
J. Chem. Phys.
123
,
044305
(
2005
).
15.
E. K.
Campbell
,
M.
Holz
,
D.
Gerlich
, and
J. P.
Maier
, “
Laboratory confirmation of C60+ as the carrier of two diffuse interstellar bands
,”
Nature
523
,
322
323
(
2015
).
16.
E. K.
Campbell
,
M.
Holz
,
J. P.
Maier
,
D.
Gerlich
,
G. A. H.
Walker
, and
D.
Bohlender
, “
Gas phase absorption spectroscopy of C60+ and C70+ in a cryogenic ion trap: Comparison with astronomical measurement
,”
Astrophys. J.
822
,
17
(
2016
).
17.
M.
Kuhn
,
M.
Renzler
,
J.
Postler
,
S.
Ralser
,
S.
Spieler
,
M.
Simpson
,
H.
Linnartz
,
A. G. G. M.
Tielens
,
J.
Cami
,
A.
Mauracher
,
Y.
Wang
,
M.
Alcamí
,
F.
Martín
,
M. K.
Beyer
,
R.
Wester
,
A.
Lindinger
, and
P.
Scheier
, “
Atomically resolved phase transition of fullerene cations solvated in helium droplets
,”
Nat. Commun.
7
,
13550
(
2016
).
18.
M. A.
Cordiner
,
H.
Linnartz
,
N. L. J.
Cox
,
J.
Cami
,
F.
Najarro
,
C. R.
Proffitt
,
R.
Lallement
,
P.
Ehrenfreund
,
B. H.
Foing
,
T. R.
Gull
,
P. J.
Sarre
, and
S. B.
Charnley
, “
Confirming interstellar C60+ using the Hubble space telescope
,”
Astrophys. J.
875
,
L28
(
2019
).
19.
B.
Kern
,
D.
Strelnikov
,
P.
Weis
,
A.
Böttcher
, and
M. M.
Kappes
, “
IR, NIR, and UV absorption spectroscopy of C602+ and C603+ in neon matrixes
,”
J. Phys. Chem. Lett.
5
,
457
460
(
2014
).
20.
D. V.
Strelnikov
,
M.
Link
,
J.
Weippert
, and
M. M.
Kappes
, “
Optical spectroscopy of small carbon clusters from electron-impact fragmentation and ionization of fullerene - C60
,”
J. Phys. Chem. A
123
,
5325
5333
(
2019
).
21.
C.
Lifshitz
,
T.
Peres
, and
I.
Agranat
, “
Properties of carbon cluster ions, Cn+, formed by dissociative ionization
,”
Int. J. Mass Spectrom. Ion Processes
93
,
149
163
(
1989
).
22.
J.
Zhen
,
D. M.
Paardekooper
,
A.
Candian
,
H.
Linnartz
, and
A. G. G. M.
Tielens
, “
Quadrupole ion trap/time-of-flight photo-fragmentation spectrometry of the hexa-peri-hexabenzocoronene (HBC) cation
,”
Chem. Phys. Lett.
592
,
211
216
(
2014
).
23.
S. P.
Ekern
,
A. G.
Marshall
,
J.
Szczepanski
, and
M.
Vala
, “
Photodissociation of gas-phase polycylic aromatic hydrocarbon cations
,”
J. Phys. Chem. A
102
,
3498
3504
(
1998
).
24.
E. K.
Campbell
and
P. W.
Dunk
, “
LV-DIB-s4PT: A new tool for astrochemistry
,”
Rev. Sci. Instrum.
90
,
103101
(
2019
).
25.
J.
Fulara
,
M.
Jakobi
, and
J. P.
Maier
, “
Electronic and infrared spectra of C60+ and C60 in neon and argon matrices
,”
Chem. Phys. Lett.
211
,
227
234
(
1993
).
26.
J.
Fulara
,
M.
Jakobi
, and
J. P.
Maier
, “
Electronic spectra of the C70 molecule and C70+, C70 ions in neon matrices
,”
Chem. Phys. Lett.
206
,
203
209
(
1993
).
27.
E. K.
Campbell
,
M.
Holz
, and
J. P.
Maier
, “
Gas-phase absorption of C702+ below 10 K: Astronomical implications
,”
Astrophys. J.
835
,
221
(
2017
).
28.
D.
Forney
,
P.
Freivogel
,
M.
Grutter
, and
J. P.
Maier
, “
Electronic absorption spectra of linear carbon chains in neon matrices. IV. C2n+1 n = 2–7
,”
J. Chem. Phys.
104
,
4954
4960
(
1996
).
29.
M.
Wyss
,
M.
Grutter
, and
J. P.
Maier
, “
Electronic spectra of long odd-number carbon chains C17–C21 and C13 - C21
,”
Chem. Phys. Lett.
304
,
35
38
(
1999
).
30.
P.
Freivogel
,
J.
Fulara
,
M.
Jakobi
,
D.
Forney
, and
J. P.
Maier
, “
Electronic absorption spectra of linear carbon chains in neon matrices. II. C2n, C2n and C2nH
,”
J. Chem. Phys.
103
,
54
59
(
1995
).
31.
A. E.
Boguslavskiy
,
H.
Ding
, and
J. P.
Maier
, “
Gas-phase electronic spectra of C18 and C22 rings
,”
J. Chem. Phys.
123
,
034305
(
2005
).
32.
A. E.
Boguslavskiy
and
J. P.
Maier
, “
Gas-phase electronic spectrum of the C14 ring
,”
Phys. Chem. Chem. Phys.
9
,
127
130
(
2007
).
33.
P.
Neubauer-Guenther
,
T. F.
Giesen
,
U.
Berndt
,
G.
Fuchs
, and
G.
Winnewisser
, “
The Cologne carbon cluster experiment: Ro-vibrational spectroscopy on C8 and other small carbon clusters
,”
Spectrochim. Acta, Part A
59
,
431
441
(
2003
).
34.
C. J. E.
Straatsma
,
M. I.
Fabrikant
,
G. E.
Douberly
, and
H. J.
Lewandowski
, “
Production of carbon clusters C3 to C12 with a cryogenic buffer-gas beam source
,”
J. Chem. Phys.
147
,
124201
(
2017
).
35.
L.
Belau
,
S. E.
Wheeler
,
B. W.
Ticknor
,
M.
Ahmed
,
S. R.
Leone
,
W. D.
Allen
,
H. F.
Schaefer
, and
M. A.
Duncan
, “
Ionization thresholds of small carbon clusters: Tunable VUV experiments and theory
,”
J. Am. Chem. Soc.
129
,
10229
10243
(
2007
).
36.
D. W.
Arnold
,
S. E.
Bradforth
,
T. N.
Kitsopoulos
, and
D. M.
Neumark
, “
Vibrationally resolved spectra of C2–C11 by anion photoelectron spectroscopy
,”
J. Chem. Phys.
95
,
8753
8764
(
1991
).
37.
M. C.
Babin
,
J. A.
DeVine
,
M. L.
Weichman
, and
D. M.
Neumark
, “
Slow photoelectron velocity-map imaging of cold C7 and C9
,”
J. Chem. Phys.
149
,
174306
(
2018
).
38.
P.
Freivogel
,
M.
Grutter
,
D.
Forney
, and
J. P.
Maier
, “
Electronic absorption spectra of carbon chain anions C2n (n = 4–7) in neon matrices
,”
J. Chem. Phys.
107
,
4468
4472
(
1997
).
39.
M.
Ohara
,
D.
Kasuya
,
H.
Shiromaru
, and
Y.
Achiba
, “
Resonance-enhanced multiphoton electron detachment (REMPED) study of carbon anions up to C21
,”
J. Phys. Chem. A
104
,
8622
8626
(
2000
).
40.
F.
Diederich
,
Y.
Rubin
,
C. B.
Knobler
,
R. L.
Whetten
,
K. E.
Schriver
,
K. N.
Houk
, and
Y.
Li
, “
All-carbon molecules: Evidence for the generation of cyclo[18]carbon from a stable organic precursor
,”
Science
245
,
1088
1090
(
1989
).
41.
H. L.
Anderson
,
C. W.
Patrick
,
L. M.
Scriven
, and
S. L.
Woltering
, “
A short history of cyclocarbons
,”
Bull. Chem. Soc. Jpn.
94
,
798
811
(
2021
).
42.
K.
Kaiser
,
L. M.
Scriven
,
F.
Schulz
,
P.
Gawel
,
L.
Gross
, and
H. L.
Anderson
, “
An sp-hybridized molecular carbon allotrope, cyclo[18]carbon
,”
Science
365
,
1299
1301
(
2019
).
43.
G. V.
Baryshnikov
,
R. R.
Valiev
,
R. T.
Nasibullin
,
D.
Sundholm
,
T.
Kurten
, and
H.
Ågren
, “
Aromaticity of even-number cyclo[n]carbons (n = 6–100)
,”
J. Phys. Chem. A
124
,
10849
10855
(
2020
).
44.
P.
Freivogel
,
J.
Fulara
,
D.
Lessen
,
D.
Forney
, and
J. P.
Maier
, “
Absorption spectra of conjugated hydrocarbon cation chains in neon matrices
,”
Chem. Phys.
189
,
335
341
(
1994
).
45.
J.
Haubrich
,
M.
Mühlhäuser
, and
S. D.
Peyerimhoff
, “
A comparative MRD-CI study of the electronic spectrum of linear and cyclic C8+ clusters
,”
J. Mol. Spectrosc.
228
,
31
37
(
2004
).
46.
L. M.
Hobbs
,
D. G.
York
,
J. A.
Thorburn
,
T. P.
Snow
,
M.
Bishof
,
S. D.
Friedman
,
B. J.
McCall
,
T.
Oka
,
B.
Rachford
,
P.
Sonnentrucker
, and
D. E.
Welty
, “
Studies of the diffuse interstellar bands. III. HD 183143
,”
Astrophys. J.
705
,
32
(
2009
).
47.
J.
Zhen
,
P.
Castellanos
,
D. M.
Paardekooper
,
H.
Linnartz
, and
A. G. G. M.
Tielens
, “
Laboratory formation of fullerenes from PAHs: Top-down interstellar chemistry
,”
Astrophys. J., Lett.
797
,
L30
(
2014
).
48.
É.
Brémond
,
Á. J.
Pérez-Jiménez
,
C.
Adamo
, and
J. C.
Sancho-García
, “
sp-hybridized carbon allotrope molecular structures: An ongoing challenge for density-functional approximations
,”
J. Chem. Phys.
151
,
211104
(
2019
).
49.
T.
Heaton-Burgess
and
W.
Yang
, “
Structural manifestation of the delocalization error of density functional approximations: C4N+2+ rings and C20 bowl, cage, and ring isomers
,”
J. Chem. Phys.
132
,
234113
(
2010
).
50.
Z. S.
Pereira
and
E. Z.
da Silva
, “
Spontaneous symmetry breaking in cyclo[18]carbon
,”
J. Phys. Chem. A
124
,
1152
1157
(
2020
).

Supplementary Material

You do not currently have access to this content.