Longitudinal and transverse 1H nuclear magnetic resonance relaxivities of Ln(III)-DOTA complexes (with Ln = Gd, Tb, Dy, Er; DOTA = 1,4,7,10-tetraazacyclododecane-N,N′,N,N‴-tetraacetic acid) and Mn(II) aqueous solutions were measured in a wide range of frequencies, 10 kHz to 700 MHz. The experimental data were interpreted by means of models derived from the Solomon–Bloembergen–Morgan theory. The data analysis was performed assuming the orbital angular momentum L = 0 for Gd-DOTA and the aqua ion [Mn(H2O)6]2+ and L ≠ 0 for Dy-, Tb-, and Er-DOTA. A refined estimation of the zero-field-splitting barrier Δ and of the modulation correlation time τv was obtained for [Mn(H2O)6]2+ by extending the fitting of nuclear magnetic relaxation dispersion profiles to the low-field regime. The Gd-DOTA fitting parameters resulted in good agreement with the literature, and the fit of transverse relaxivity data confirmed the negligibility of the scalar interaction in the nuclear relaxation mechanism. Larger transverse relaxivities of Dy-DOTA and Tb-DOTA (∼10 mM−1 s−1) with respect to Er-DOTA (∼1 mM−1 s−1) were observed at 16 T. Such higher values are suggested to be due to a shorter residence time τm that is possibly linked to the fluctuations of the hyperfine interaction and the different shape of the magnetic anisotropy. The possible employment of Dy-DOTA, Tb-DOTA, and Er-DOTA as negative magnetic resonance imaging contrast agents for high-field applications was envisaged by collecting spin-echo images at 7 T. Particularly in Dy- and Tb-derivatives, the transverse relaxivity at 16 T is of the order of the Gd-one at 1.5 T.

1.
A.
Merbach
,
L.
Helm
, and
É.
Tóth
,
The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging
, 2nd ed. (
John Wiley & Sons, Ltd.
,
2013
).
2.
I.
Solomon
, “
Relaxation processes in a system of two spins
,”
Phys. Rev.
99
,
559
565
(
1955
).
3.
N.
Bloembergen
, “
Proton relaxation times in paramagnetic solutions
,”
J. Chem. Phys.
27
,
572
573
(
1957
).
4.
N.
Bloembergen
and
L. O.
Morgan
, “
Proton relaxation times in paramagnetic solutions. Effects of electron spin relaxation
,”
J. Chem. Phys.
34
,
842
850
(
1961
).
5.
N.
Bloembergen
,
E. M.
Purcell
, and
R. V.
Pound
, “
Relaxation effects in nuclear magnetic resonance absorption
,”
Phys. Rev.
73
,
679
712
(
1948
).
6.
P. H.
Fries
and
E.
Belorizky
, “
Electronic relaxation of paramagnetic metal ions and NMR relaxivity in solution: Critical analysis of various approaches and application to a Gd(III)-based contrast agent
,”
J. Chem. Phys.
123
,
124510
(
2005
).
7.
D.
Kruk
,
J.
Kowalewski
,
D. S.
Tipikin
,
J. H.
Freed
,
M.
Mościcki
,
A.
Mielczarek
, and
M.
Port
, “
Joint analysis of ESR lineshapes and 1H NMRD profiles of DOTA-Gd derivatives by means of the slow motion theory
,”
J. Chem. Phys.
134
,
024508
(
2011
).
8.
K.
Ivanov
,
A.
Yurkovskaya
, and
H.-M.
Vieth
, “
High resolution NMR study of T1 magnetic relaxation dispersion. I. Theoretical considerations of relaxation of scalar coupled spins at arbitrary magnetic field
,”
J. Chem. Phys.
129
,
234513
(
2008
).
9.
J.
Kowalewski
,
D.
Kruk
, and
G.
Parigi
, “
NMR relaxation in solution of paramagnetic complexes: Recent theoretical progress for S ≥ 1
,”
Adv. Inorg. Chem.
57
,
41
104
(
2005
).
10.
J. H.
Duyn
, “
The future of ultra-high field MRI and fMRI for study of the human brain
,”
NeuroImage
62
,
1241
1248
(
2012
).
11.
O.
Kraff
and
H. H.
Quick
, “
7T: Physics, safety, and potential clinical applications
,”
J. Magn. Reson. Imaging
46
,
1573
1589
(
2017
).
12.
G.
Barisano
,
F.
Sepehrband
,
S.
Ma
,
K.
Jann
,
R.
Cabeen
,
D. J.
Wang
,
A. W.
Toga
, and
M.
Law
, “
Clinical 7 T MRI: Are we there yet? A review about magnetic resonance imaging at ultra-high field
,”
Br. J. Radiol.
92
,
20180492
(
2019
).
13.
T.
Nakada
, “
Clinical application of high and ultra high-field MRI
,”
Brain Dev.
29
,
325
335
(
2007
).
14.
L.
Frullano
and
T. J.
Meade
, “
Multimodal MRI contrast agents
,”
J. Biol. Inorg. Chem.
12
,
939
949
(
2007
).
15.
P.
Fries
,
J. N.
Morelli
,
F.
Lux
,
O.
Tillement
,
G.
Schneider
, and
A.
Buecker
, “
The issues and tentative solutions for contrast-enhanced magnetic resonance imaging at ultra-high field strength
,”
Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
6
,
559
573
(
2014
).
16.
J.
Wahsner
,
E. M.
Gale
,
A.
Rodríguez-Rodríguez
, and
P.
Caravan
, “
Chemistry of MRI contrast agents: Current challenges and new frontiers
,”
Chem. Rev.
119
,
957
1057
(
2019
).
17.
J.
Garcia
,
J.
Neelavalli
,
E. M.
Haacke
, and
M. J.
Allen
, “
EuII-containing cryptates as contrast agents for ultra-high field strength magnetic resonance imaging
,”
Chem. Commun.
47
,
12858
12860
(
2011
).
18.
J.
Garcia
,
A. N. W.
Kuda-Wedagedara
, and
M. J.
Allen
, “
Physical properties of Eu2+-containing cryptates as contrast agents for ultrahigh-field magnetic resonance imaging
,”
Eur. J. Inorg. Chem.
2012
,
2135
2140
.
19.
L.
Vander Elst
,
A.
Roch
,
P.
Gillis
,
S.
Laurent
,
F.
Botteman
,
J. W. M.
Bulte
, and
R. N.
Muller
, “
Dy-DTPA derivatives as relaxation agents for very high field MRI: The beneficial effect of slow water exchange on the transverse relaxivities
,”
Magn. Reson. Med.
47
,
1121
1130
(
2002
).
20.
S.
Aime
,
M.
Botta
,
L.
Barbero
,
F.
Uggeri
, and
F.
Fedeli
, “
Water signal suppression by T2‐relaxation enhancement promoted by Dy(III) complexes
,”
Magn. Reson. Chem.
29
,
S85
S88
(
1991
).
21.
M.
Gueron
, “
Nuclear relaxation in macromolecules by paramagnetic ions: A novel mechanism
,”
J. Magn. Reson.
19
,
58
66
(
1975
).
22.
I.
Bertini
,
F.
Capozzi
,
C.
Luchinat
,
G.
Nicastro
, and
Z.
Xia
, “
Water proton relaxation for some lanthanide aqua ions in solution
,”
J. Phys. Chem.
97
,
6351
6354
(
1993
).
23.
P. H.
Fries
and
E.
Belorizky
, “
Quantitative interpretation of the very fast electronic relaxation of most Ln3+ ions in dissolved complexes
,”
J. Chem. Phys.
136
,
074513
(
2012
).
24.
M.
Botta
,
F.
Carniato
,
D.
Esteban-Gómez
,
C.
Platas-Iglesias
, and
L.
Tei
, “
Mn(II) compounds as an alternative to Gd-based MRI probes
,”
Future Med. Chem.
11
,
1461
1483
(
2019
).
25.
R.
Sharp
, “
The mechanism of paramagnetic NMR relaxation produced by Mn(II): Role of orthorhombic and fourth-order zero field splitting terms
,”
J. Chem. Phys.
129
,
144307
(
2008
).
26.
K. R.
Lata
,
N.
Sahoo
, and
T. P.
Das
, “
Nature of second hydration shell in Mn+2-aquoion system: Influence on proton relaxivity in nuclear magnetic resonance
,”
J. Chem. Phys.
94
,
3715
3721
(
1991
).
27.
V. L.
Ermolaev
and
E. B.
Sveshnikova
, “
The application of luminescence-kinetic methods in the study of the formation of lanthanide ion complexes in solution
,”
Russ. Chem. Rev.
63
,
905
922
(
1994
).
28.
K. J. H.
Allen
,
E. C.
Nicholls-Allison
,
K. R. D.
Johnson
,
R. S.
Nirwan
,
D. J.
Berg
,
D.
Wester
, and
B.
Twamley
, “
Lanthanide complexes of the Kläui metalloligand, CpCo(P=O(OR)2)3: An examination of ligand exchange kinetics between isotopomers by electrospray mass spectrometry
,”
Inorg. Chem.
51
,
12436
12443
(
2012
).
29.
H.
Terraschke
,
M.
Rothe
, and
P.
Lindenberg
, “
In situ monitoring metal-ligand exchange processes by optical spectroscopy and X-ray diffraction analysis: A review
,”
Rev. Anal. Chem.
37
,
20170003
(
2018
).
30.
L.
Tei
,
Z.
Baranyai
,
L.
Gaino
,
A.
Forgács
,
A.
Vágner
, and
M.
Botta
, “
Thermodynamic stability, kinetic inertness and relaxometric properties of monoamide derivatives of lanthanide(III) DOTA complexes
,”
Dalton Trans.
44
,
5467
5478
(
2015
).
31.
M.
Briganti
,
E.
Lucaccini
,
L.
Chelazzi
,
S.
Ciattini
,
L.
Sorace
,
R.
Sessoli
,
F.
Totti
, and
M.
Perfetti
, “
Magnetic anisotropy trends along a full 4f-series: The fn+7 effect
,”
J. Am. Chem. Soc.
143
,
8108
8115
(
2021
).
32.
J. A.
Peters
,
J.
Huskens
, and
D. J.
Raber
, “
Lanthanide induced shifts and relaxation rate enhancements
,”
Prog. Nucl. Magn. Reson. Spectrosc.
28
,
283
350
(
1996
).
33.
J.
Kowalewski
,
C.
Luchinat
,
T.
Nilsson
, and
G.
Parigi
, “
Nuclear spin relaxation in paramagnetic systems: Electron spin relaxation effects under near-redfield limit conditions and beyond
,”
J. Phys. Chem. A
106
,
7376
7382
(
2002
).
34.
P.
Gillis
,
A.
Roch
, and
R. A.
Brooks
, “
Corrected equations for susceptibility-induced T2-shortening
,”
J. Magn. Reson.
137
,
402
407
(
1999
).
35.
M.-E.
Boulon
,
G.
Cucinotta
,
J.
Luzon
,
C.
Degl’Innocenti
,
M.
Perfetti
,
K.
Bernot
,
G.
Calvez
,
A.
Caneschi
, and
R.
Sessoli
, “
Magnetic anisotropy and spin-parity effect along the series of lanthanide complexes with DOTA
,”
Angew. Chem., Int. Ed.
52
,
350
354
(
2013
).
36.
F.
Benetollo
,
G.
Bombieri
,
S.
Aime
, and
M.
Botta
, “
A holmium complex of a macrocyclic ligand (DOTA) and its isostructural europium analogue
,”
Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
55
,
353
356
(
1999
).
37.
J. F.
Desreux
, “
Nuclear magnetic resonance spectroscopy of lanthanide complexes with a tetraacetic tetraaza macrocycle. Unusual conformation properties
,”
Inorg. Chem.
19
,
1319
1324
(
1980
).
38.
R. W.
Brown
,
Y.-C. N.
Cheng
,
E. M.
Haacke
,
M. R.
Thompson
, and
R.
Venkatesan
,
Magnetic Resonance Imaging: Physical Principles and Sequence Design
(
John Wiley & Sons
,
2014
).
39.
E.
Anoardo
,
G.
Galli
, and
G.
Ferrante
, “
Fast-field-cycling NMR: Applications and instrumentation
,”
Appl. Magn. Reson.
20
,
365
404
(
2001
).
40.
C. V. G.
Ferrante
,
D.
Canina
,
E.
Bonardi
,
M.
Polello
, and
P.
Golzi
, “
Measurement of spin-spin relaxation time T2 at very low magnetic field by means of the fast field cycling NMR method
,” in
48th ENC Conference
,
2007
.
41.
D.
Esteban-Gómez
,
C.
Cassino
,
M.
Botta
, and
C.
Platas-Iglesias
, “
17O and 1H relaxometric and DFT study of hyperfine coupling constants in [Mn(H2O)6]2+
,”
RSC Adv.
4
,
7094
7103
(
2014
).
42.
D. H.
Powell
,
O. M. N.
Dhubhghaill
,
D.
Pubanz
,
L.
Helm
,
Y. S.
Lebedev
,
W.
Schlaepfer
, and
A. E.
Merbach
, “
Structural and dynamic parameters obtained from 17O NMR, EPR, and NMRD studies of monomeric and dimeric Gd3+ complexes of interest in magnetic resonance imaging: An integrated and theoretically self-consistent approach
,”
J. Am. Chem. Soc.
118
,
9333
9346
(
1996
).
43.
K.
Micskei
,
L.
Helm
,
E.
Brücher
, and
A. E.
Merbach
, “
17O NMR study of water exchange on [Gd(DTPA)(H2O)]2− and [Gd(DOTA)(H2O)] related to NMR imaging
,”
Inorg. Chem.
32
,
3844
3850
(
1993
).
44.
G.
González
,
D. H.
Powell
,
V.
Tissières
, and
A. E.
Merbach
, “
Water-exchange, electronic relaxation, and rotational dynamics of the MRI contrast agent [Gd(DTPA-BMA)(H2O)] in aqueous solution: A variable pressure, temperature, and magnetic field 17O NMR study
,”
J. Phys. Chem.
98
,
53
59
(
1994
).
45.
I.
Bertini
,
C.
Luchinat
, and
G.
Parigi
, “
1H NMRD profiles of paramagnetic complexes and metalloproteins
,”
Adv. Inorg. Chem.
57
,
105
172
(
2005
).
46.
R.
Hausser
and
F.
Noack
, “
Kernmagnetische relaxation und korrelation in zwei-spin-systemen
,”
Z. Phys.
182
,
93
110
(
1964
).
47.
I.
Bertini
,
F.
Briganti
,
Z. C.
Xia
, and
C.
Luchinat
, “
Nuclear magnetic relaxation dispersion studies of hexaaquo Mn(II) ions in water-glycerol mixtures
,”
J. Magn. Reson., Ser. A
101
,
198
201
(
1993
).
48.
S.
Aime
,
M.
Botta
,
G.
Ermondi
,
F.
Fedeli
, and
F.
Uggeri
, “
Synthesis and NMRD studies of gadolinium(3+) complexes of macrocyclic polyamino polycarboxylic ligands bearing β-benzyloxy-α-propionic residues
,”
Inorg. Chem.
31
,
1100
1103
(
1992
).
49.
S.
Aime
,
L.
Barbero
,
M.
Botta
, and
G.
Ermondi
, “
Determination of metal-proton distances and electronic relaxation times in lanthanide complexes by nuclear magnetic resonance spectroscopy
,”
J. Chem. Soc., Dalton Trans.
1992
,
225
228
.
50.
R.
Marin
,
G.
Brunet
, and
M.
Murugesu
, “
Shining new light on multifunctional lanthanide single-molecule magnets
,”
Angew. Chem., Int. Ed.
60
,
1728
1746
(
2021
).
51.
E.
Terreno
,
P.
Boniforte
,
M.
Botta
,
F.
Fedeli
,
L.
Milone
,
A.
Mortillaro
, and
S.
Aime
, “
The water-exchange rate in neutral heptadentate DO3A-like GdIII complexes: Effect of the basicity at the macrocyclic nitrogen site
,”
Eur. J. Inorg. Chem.
2003
,
3530
3533
.
52.
G.
Cucinotta
,
M.
Perfetti
,
J.
Luzon
,
M.
Etienne
,
P.-E.
Car
,
A.
Caneschi
,
G.
Calvez
,
K.
Bernot
, and
R.
Sessoli
, “
Magnetic anisotropy in a dysprosium/DOTA single-molecule magnet: Beyond simple magneto-structural correlations
,”
Angew. Chem., Int. Ed.
51
,
1606
1610
(
2012
).
53.
E. A.
Suturina
,
K.
Mason
,
C. F. G. C.
Geraldes
,
N. F.
Chilton
,
D.
Parker
, and
I.
Kuprov
, “
Lanthanide-induced relaxation anisotropy
,”
Phys. Chem. Chem. Phys.
20
,
17676
17686
(
2018
).
54.
L.
Smentek
,
B.
Andes Hess
,
J. P.
Cross
,
H.
Charles Manning
, and
D. J.
Bornhop
, “
Density-functional theory structures of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid complexes for ions across the lanthanide series
,”
J. Chem. Phys.
123
,
244302
(
2005
).
55.
J. W. M.
Bulte
,
C.
Wu
,
M. W.
Brechbiel
,
R. A.
Brooks
,
J.
Vymazal
,
M.
Holla
, and
J. A.
Frank
, “
Dysprosium-DOTA-PAMAM dendrimers as macromolecular T2 contrast agents: Preparation and relaxometry
,”
Invest. Radiol.
33
,
841
845
(
1998
).
56.
K. E.
Kellar
,
S. L.
Fossheim
, and
S. H.
Koenig
, “
Magnetic field dependence of solvent proton relaxation by solute dysprosium(III) complexes
,”
Invest. Radiol.
33
,
835
840
(
1998
).
57.

In the literature, the value of Δ = E/ħ is usually expressed in frequency unit (s−1).

Supplementary Material

You do not currently have access to this content.