Community efforts in the computational molecular sciences (CMS) are evolving toward modular, open, and interoperable interfaces that work with existing community codes to provide more functionality and composability than could be achieved with a single program. The Quantum Chemistry Common Driver and Databases (QCDB) project provides such capability through an application programming interface (API) that facilitates interoperability across multiple quantum chemistry software packages. In tandem with the Molecular Sciences Software Institute and their Quantum Chemistry Archive ecosystem, the unique functionalities of several CMS programs are integrated, including CFOUR, GAMESS, NWChem, OpenMM, Psi4, Qcore, TeraChem, and Turbomole, to provide common computational functions, i.e., energy, gradient, and Hessian computations as well as molecular properties such as atomic charges and vibrational frequency analysis. Both standard users and power users benefit from adopting these APIs as they lower the language barrier of input styles and enable a standard layout of variables and data. These designs allow end-to-end interoperable programming of complex computations and provide best practices options by default.

1.
D. G.
Truhlar
, “
Basis-set extrapolation
,”
Chem. Phys. Lett.
294
,
45
48
(
1998
).
2.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
, “
Basis-set convergence in correlated calculations on Ne, N2, and H2O
,”
Chem. Phys. Lett.
286
,
243
252
(
1998
).
3.
A. L. L.
East
and
W. D.
Allen
, “
The heat of formation of NCO
,”
J. Chem. Phys.
99
,
4638
4650
(
1993
).
4.
A. G.
Császár
,
W. D.
Allen
, and
H. F.
Schaefer
, “
In pursuit of the ab initio limit for conformational energy prototypes
,”
J. Chem. Phys.
108
,
9751
9764
(
1998
).
5.
M. S.
Schuurman
,
S. R.
Muir
,
W. D.
Allen
, and
H. F.
Schaefer
, “
Toward subchemical accuracy in computational thermochemistry: Focal point analysis of the heat of formation of NCO and [H, N, C, O] isomers
,”
J. Chem. Phys.
120
,
11586
11599
(
2004
).
6.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
,
V.
Rassolov
, and
J. A.
Pople
, “
Gaussian-3 (G3) theory for molecules containing first and second-row atoms
,”
J. Chem. Phys.
109
,
7764
7776
(
1998
).
7.
A.
Tajti
,
P. G.
Szalay
,
A. G.
Császár
,
M.
Kállay
,
J.
Gauss
,
E. F.
Valeev
,
B. A.
Flowers
,
J.
Vázquez
, and
J. F.
Stanton
, “
HEAT: High accuracy extrapolated ab initio thermochemistry
,”
J. Chem. Phys.
121
,
11599
11613
(
2004
).
8.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
9.
S. F.
Boys
and
F.
Bernardi
, “
The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
,”
Mol. Phys.
19
,
553
566
(
1970
).
10.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
, “
A fifth-order perturbation comparison of electron correlation theories
,”
Chem. Phys. Lett.
157
,
479
483
(
1989
).
11.
B.
Thaller
,
I. P.
Grant
,
H. M.
Quiney
,
D.
Andrae
,
J.
Desclaux
,
T.
Saue
,
L.
Labzowsky
,
I.
Goidenko
,
E.
Engel
,
M.
Dolg
,
J.
Sapirstein
,
N.
Christensen
,
A.
Wolf
,
M.
Reiher
,
B. A.
Hess
,
W.
Kutzelnigg
,
D.
Sundholm
,
K.
Fægri
,
K. G.
Dyall
,
P.
Schwerdtfeger
, and
L.
Visscher
, in
Relativistic Electronic Structure Theory—Part 1: Fundamentals
, edited by
P.
Schwerdtfeger
(
Elsevier
,
Amsterdam
,
2002
).
12.
M.
Born
and
R.
Oppenheimer
, “
Zur quantentheorie der molekeln
,”
Ann. Phys.
389
,
457
484
(
1927
).
13.
W.
Kutzelnigg
, “
The adiabatic approximation I. The physical background of the Born–Handy ansatz
,”
Mol. Phys.
90
,
909
916
(
1997
).
14.
C. E.
Warden
,
D. G. A.
Smith
,
L. A.
Burns
,
U.
Bozkaya
, and
C. D.
Sherrill
, “
Efficient and automated computation of accurate molecular geometries using focal-point approximations to large-basis coupled-cluster theory
,”
J. Chem. Phys.
152
,
124109
(
2020
).
15.

The QCDB project name, Quantum Chemistry Common Driver and Databases, describes its early scope. The database aspect has since departed and been properly developed in the QCArchive project, particularly QCFractal. See Sec. II A and Ref. 17 for details.

16.
JSON SCHEMA: A vocabulary that allows you to annotate and validate JSON documents. For the current version, see https://json-schema.org/; accessed January 2020.
17.
D. G. A.
Smith
,
D.
Altarawy
,
L. A.
Burns
,
M.
Welborn
,
L. N.
Naden
,
L.
Ward
,
S.
Ellis
,
B. P.
Pritchard
, and
T. D.
Crawford
, “
The MolSSI QCARCHIVE project: An open-source platform to compute, organize, and share quantum chemistry data
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1491
(
2021
).
18.
A.
Krylov
,
T. L.
Windus
,
T.
Barnes
,
E.
Marin-Rimoldi
,
J. A.
Nash
,
B.
Pritchard
,
D. G. A.
Smith
,
D.
Altarawy
,
P.
Saxe
,
C.
Clementi
,
T. D.
Crawford
,
R. J.
Harrison
,
S.
Jha
,
V. S.
Pande
, and
T.
Head-Gordon
, “
Perspective: Computational chemistry software and its advancement as illustrated through three grand challenge cases for molecular science
,”
J. Chem. Phys.
149
,
180901
(
2018
).
19.
D. G. A.
Smith
,
B.
de Jong
,
L. A.
Burns
,
G.
Hutchison
, and
M. D.
Hanwell
, QCSCHEMA: A schema for quantum chemistry. For the current version, see https://github.com/MolSSI/QCSchema; accessed January 2020.
20.
M.
Barbatti
,
G.
Granucci
,
M.
Persico
,
M.
Ruckenbauer
,
M.
Vazdar
,
M.
Eckert-Maksić
, and
H.
Lischka
, “
The on-the-fly surface-hopping program system NEWTON-X: Application to ab initio simulation of the nonadiabatic photodynamics of benchmark systems
,”
J. Photochem. Photobiol., A
190
,
228
240
(
2007
).
21.
A.
Toniolo
,
A. L.
Thompson
, and
T. J.
Martínez
, “
Excited state direct dynamics of benzene with reparameterized multi-reference semiempirical configuration interaction methods
,”
Chem. Phys.
304
,
133
145
(
2004
).
22.
B. G.
Levine
,
J. D.
Coe
,
A. M.
Virshup
, and
T. J.
Martínez
, “
Implementation of ab initio multiple spawning in the Molpro quantum chemistry package
,”
Chem. Phys.
347
,
3
16
(
2008
).
23.
A.
Gaenko
,
A.
DeFusco
,
S. A.
Varganov
,
T. J.
Martínez
, and
M. S.
Gordon
, “
Interfacing the ab initio multiple spawning method with electronic structure methods in GAMESS: Photodecay of trans-azomethane
,”
J. Phys. Chem. A
118
,
10902
10908
(
2014
).
24.
M.
Keceli
and
S.
Elliott
, Quantum Thermochemistry Calculator; https://github.com/PACChem/QTC; accessed 25 November 2019.
25.
J.
Steinmetzer
,
S.
Kupfer
, and
S.
Gräfe
, “
pysisyphus: Exploring potential energy surfaces in ground and excited states
,”
Int. J. Quantum Chem.
121
,
e26390
(
2021
).
26.
J.
Řezáč
, Cuby—Ruby framework for computational chemistry, version 4, http://cuby4.molecular.cz; accessed 22 November 2019.
27.
J.
Řezáč
, “
Cuby: An integrative framework for computational chemistry
,”
J. Comput. Chem.
37
,
1230
1237
(
2016
).
28.
W. F.
Polik
and
J. R.
Schmidt
, “
WebMO: Web-based computational chemistry calculations in education and research
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2021
,
e1554
.
29.
A. H.
Larsen
,
J. J.
Mortensen
,
J.
Blomqvist
,
I. E.
Castelli
,
R.
Christensen
,
M.
Dułak
,
J.
Friis
,
M. N.
Groves
,
B.
Hammer
,
C.
Hargus
,
E. D.
Hermes
,
P. C.
Jennings
,
P. B.
Jensen
,
J.
Kermode
,
J. R.
Kitchin
,
E. L.
Kolsbjerg
,
J.
Kubal
,
K.
Kaasbjerg
,
S.
Lysgaard
,
J. B.
Maronsson
,
T.
Maxson
,
T.
Olsen
,
L.
Pastewka
,
A.
Peterson
,
C.
Rostgaard
,
J.
Schiøtz
,
O.
Schütt
,
M.
Strange
,
K. S.
Thygesen
,
T.
Vegge
,
L.
Vilhelmsen
,
M.
Walter
,
Z.
Zeng
, and
K. W.
Jacobsen
, “
The atomic simulation environment—A Python library for working with atoms
,”
J. Phys.: Condens. Matter
29
,
273002
(
2017
).
30.
M.
Gjerding
and
A. H.
Larsen
, ASR: Atomic simulation recipes: Recipes for calculating material properties. For the current version, see https://gitlab.com/asr-dev/asr; accessed September 2021. Documentation at https://asr.readthedocs.io/en/latest/index.html.
31.
S. P.
Huber
,
S.
Zoupanos
,
M.
Uhrin
,
L.
Talirz
,
L.
Kahle
,
R.
Häuselmann
,
D.
Gresch
,
T.
Müller
,
A. V.
Yakutovich
,
C. W.
Andersen
,
F. F.
Ramirez
,
C. S.
Adorf
,
F.
Gargiulo
,
S.
Kumbhar
,
E.
Passaro
,
C.
Johnston
,
A.
Merkys
,
A.
Cepellotti
,
N.
Mounet
,
N.
Marzari
,
B.
Kozinsky
, and
G.
Pizzi
, “
AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance
,”
Sci. Data
7
,
300
(
2020
).
32.
M.
Uhrin
,
S. P.
Huber
,
J.
Yu
,
N.
Marzari
, and
G.
Pizzi
, “
Workflows in AiiDA: Engineering a high-throughput, event-based engine for robust and modular computational workflows
,”
Comput. Mater. Sci.
187
,
110086
(
2021
).
33.
Y.
Lu
,
M. R.
Farrow
,
P.
Fayon
,
A. J.
Logsdail
,
A. A.
Sokol
,
C. R. A.
Catlow
,
P.
Sherwood
, and
T. W.
Keal
, “
Open-source, Python-based redevelopment of the ChemShell multiscale QM/MM environment
,”
J. Chem. Theory Comput.
15
,
1317
1328
(
2019
).
34.
N. M.
O’Boyle
,
A. L.
Tenderholt
, and
K. M.
Langner
, “
cclib: A library for package-independent computational chemistry algorithms
,”
J. Comput. Chem.
29
,
839
845
(
2008
).
35.
K. M.
Langner
and
E.
Berquist
, CCLIB: Parsers and algorithms for computational chemistry logfiles. For the current version, see https://github.com/cclib/cclib; accessed May 2021, https://doi.org/10.5281/zenodo.1407790.
36.
T.
Verstraelen
,
P.
Tecmer
,
F.
Heidar-Zadeh
,
C. E.
González-Espinoza
,
M.
Chan
,
T. D.
Kim
,
K.
Boguslawski
,
S.
Fias
,
S.
Vandenbrande
,
D.
Berrocal
, and
P. W.
Ayers
, HORTON, version 2.1.1, a helpful open-source research tool for n-fermion systems, see http://theochem.github.com/horton/.
37.
D. G. A.
Smith
,
L. A.
Burns
,
L.
Naden
, and
M.
Welborn
, QCELEMENTAL: Periodic table, physical constants, and molecule parsing for quantum chemistry. For the current version, see https://github.com/MolSSI/QCElemental; accessed January 2020.
38.
D. G. A.
Smith
,
S.
Lee
,
L. A.
Burns
, and
M.
Welborn
, QCENGINE: Quantum chemistry program executor and IO standardizer (QCSchema). For the current version, see https://github.com/MolSSI/QCEngine; accessed January 2020.
39.
D. G. A.
Smith
,
M.
Welborn
,
D.
Altarawy
, and
L.
Naden
, QCFRACTAL: A distributed compute and database platform for quantum chemistry. For the current version, see https://github.com/MolSSI/QCFractal; accessed January 2020.
40.
D. G. A.
Smith
,
L. A.
Burns
,
D.
Altarawy
,
L.
Naden
, and
M.
Welborn
, QCARCHIVE: A central source to compile, aggregate, query, and share quantum chemistry data, https://qcarchive.molssi.org; accessed January 2020.
41.
L. A.
Burns
,
A. T.
Lolinco
,
Z. L.
Glick
,
J.
Lee
, and
N. D.
Silva
, QCDB: Quantum chemistry common driver and databases. For the current version, see https://github.com/qcdb/qcdb; accessed January 2020.
42.
H.
Grecco
, PINT: Operate and manipulate physical quantities in Python. For the current version, see https://github.com/hgrecco/pint; accessed April 2020.
43.
S.
Colvin
, PYDANTIC: Data parsing and validation using Python type hints. For the current version, see https://github.com/samuelcolvin/pydantic; accessed April 2020.
44.
M. F.
Herbst
,
M.
Scheurer
,
T.
Fransson
,
D. R.
Rehn
, and
A.
Dreuw
, “
adcc: A versatile toolkit for rapid development of algebraic-diagrammatic construction methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
10
,
e1462
(
2020
).
45.
M. F.
Herbst
and
M.
Scheurer
, ADCC: Seamlessly connect your program to ADC. For the current version, see https://github.com/adc-connect/adcc; accessed January 2020. For the originating project, see https://adc-connect.org.
46.
D. A.
Matthews
,
L.
Cheng
,
M. E.
Harding
,
F.
Lipparini
,
S.
Stopkowicz
,
T.-C.
Jagau
,
P. G.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
, “
Coupled-cluster techniques for computational chemistry: The CFOUR program package
,”
J. Chem. Phys.
152
,
214108
(
2020
).
47.
G. M. J.
Barca
,
C.
Bertoni
,
L.
Carrington
,
D.
Datta
,
N.
De Silva
,
J. E.
Deustua
,
D. G.
Fedorov
,
J. R.
Gour
,
A. O.
Gunina
,
E.
Guidez
,
T.
Harville
,
S.
Irle
,
J.
Ivanic
,
K.
Kowalski
,
S. S.
Leang
,
H.
Li
,
W.
Li
,
J. J.
Lutz
,
I.
Magoulas
,
J.
Mato
,
V.
Mironov
,
H.
Nakata
,
B. Q.
Pham
,
P.
Piecuch
,
D.
Poole
,
S. R.
Pruitt
,
A. P.
Rendell
,
L. B.
Roskop
,
K.
Ruedenberg
,
T.
Sattasathuchana
,
M. W.
Schmidt
,
J.
Shen
,
L.
Slipchenko
,
M.
Sosonkina
,
V.
Sundriyal
,
A.
Tiwari
,
J. L.
Galvez Vallejo
,
B.
Westheimer
,
M.
Włoch
,
P.
Xu
,
F.
Zahariev
, and
M. S.
Gordon
, “
Recent developments in the general atomic and molecular electronic structure system
,”
J. Chem. Phys.
152
,
154102
(
2020
).
48.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
W.
Györffy
,
D.
Kats
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
,
K. R.
Shamasundar
,
T. B.
Adler
,
R. D.
Amos
,
S. J.
Bennie
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
E.
Goll
,
C.
Hampel
,
A.
Hesselmann
,
G.
Hetzer
,
T.
Hrenar
,
G.
Jansen
,
C.
Köppl
,
S. J. R.
Lee
,
Y.
Liu
,
A. W.
Lloyd
,
Q.
Ma
,
R. A.
Mata
,
A. J.
May
,
S. J.
McNicholas
,
W.
Meyer
,
T. F.
Miller
III
,
M. E.
Mura
,
A.
Nicklass
,
D. P.
O’Neill
,
P.
Palmieri
,
D.
Peng
,
K.
Pflüger
,
R.
Pitzer
,
M.
Reiher
,
T.
Shiozaki
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
,
M.
Wang
, and
M.
Welborn
, molpro, version 2019.2, a package of ab initio programs,
2019
, see https://www.molpro.net.
49.
H.-J.
Werner
,
P. J.
Knowles
,
F. R.
Manby
,
J. A.
Black
,
K.
Doll
,
A.
Heßelmann
,
D.
Kats
,
A.
Köhn
,
T.
Korona
,
D. A.
Kreplin
,
Q.
Ma
,
T. F.
Miller
,
A.
Mitrushchenkov
,
K. A.
Peterson
,
I.
Polyak
,
G.
Rauhut
, and
M.
Sibaev
, “
The Molpro quantum chemistry package
,”
J. Chem. Phys.
152
,
144107
(
2020
).
50.
R.
Bast
,
M.
Bjørgve
,
R.
Di Remigio
,
A.
Durdek
,
L.
Frediani
,
G.
Gerez
,
S. R.
Jensen
,
J.
Juselius
,
R.
Monstad
, and
P.
Wind
, MRChem: MultiResolution Chemistry,
2020
.
51.
S. R.
Jensen
,
S.
Saha
,
J. A.
Flores-Livas
,
W.
Huhn
,
V.
Blum
,
S.
Goedecker
, and
L.
Frediani
, “
The elephant in the room of density functional theory calculations
,”
J. Phys. Chem. Lett.
8
,
1449
1457
(
2017
).
52.
E.
Aprà
,
E. J.
Bylaska
,
W. A.
de Jong
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
M.
Valiev
,
H. J. J.
van Dam
,
Y.
Alexeev
,
J.
Anchell
,
V.
Anisimov
,
F. W.
Aquino
,
R.
Atta-Fynn
,
J.
Autschbach
,
N. P.
Bauman
,
J. C.
Becca
,
D. E.
Bernholdt
,
K.
Bhaskaran-Nair
,
S.
Bogatko
,
P.
Borowski
,
J.
Boschen
,
J.
Brabec
,
A.
Bruner
,
E.
Cauët
,
Y.
Chen
,
G. N.
Chuev
,
C. J.
Cramer
,
J.
Daily
,
M. J. O.
Deegan
,
T. H.
Dunning
,
M.
Dupuis
,
K. G.
Dyall
,
G. I.
Fann
,
S. A.
Fischer
,
A.
Fonari
,
H.
Früchtl
,
L.
Gagliardi
,
J.
Garza
,
N.
Gawande
,
S.
Ghosh
,
K.
Glaesemann
,
A. W.
Götz
,
J.
Hammond
,
V.
Helms
,
E. D.
Hermes
,
K.
Hirao
,
S.
Hirata
,
M.
Jacquelin
,
L.
Jensen
,
B. G.
Johnson
,
H.
Jónsson
,
R. A.
Kendall
,
M.
Klemm
,
R.
Kobayashi
,
V.
Konkov
,
S.
Krishnamoorthy
,
M.
Krishnan
,
Z.
Lin
,
R. D.
Lins
,
R. J.
Littlefield
,
A. J.
Logsdail
,
K.
Lopata
,
W.
Ma
,
A. V.
Marenich
,
J.
Martin del Campo
,
D.
Mejia-Rodriguez
,
J. E.
Moore
,
J. M.
Mullin
,
T.
Nakajima
,
D. R.
Nascimento
,
J. A.
Nichols
,
P. J.
Nichols
,
J.
Nieplocha
,
A.
Otero-de-la Roza
,
B.
Palmer
,
A.
Panyala
,
T.
Pirojsirikul
,
B.
Peng
,
R.
Peverati
,
J.
Pittner
,
L.
Pollack
,
R. M.
Richard
,
P.
Sadayappan
,
G. C.
Schatz
,
W. A.
Shelton
,
D. W.
Silverstein
,
D. M. A.
Smith
,
T. A.
Soares
,
D.
Song
,
M.
Swart
,
H. L.
Taylor
,
G. S.
Thomas
,
V.
Tipparaju
,
D. G.
Truhlar
,
K.
Tsemekhman
,
T.
Van Voorhis
,
Á.
Vázquez-Mayagoitia
,
P.
Verma
,
O.
Villa
,
A.
Vishnu
,
K. D.
Vogiatzis
,
D.
Wang
,
J. H.
Weare
,
M. J.
Williamson
,
T. L.
Windus
,
K.
Woliński
,
A. T.
Wong
,
Q.
Wu
,
C.
Yang
,
Q.
Yu
,
M.
Zacharias
,
Z.
Zhang
,
Y.
Zhao
, and
R. J.
Harrison
, “
NWChem: Past, present, and future
,”
J. Chem. Phys.
152
,
184102
(
2020
).
53.
D. G. A.
Smith
,
L. A.
Burns
,
A. C.
Simmonett
,
R. M.
Parrish
,
M. C.
Schieber
,
R.
Galvelis
,
P.
Kraus
,
H.
Kruse
,
R. D.
Remigio
,
A.
Alenaizan
,
A. M.
James
,
S.
Lehtola
,
J. P.
Misiewicz
,
M.
Scheurer
,
R. A.
Shaw
,
J. B.
Schriber
,
Y.
Xie
,
Z. L.
Glick
,
D. A.
Sirianni
,
J. S.
O’Brien
,
J. M.
Waldrop
,
A.
Kumar
,
E. G.
Hohenstein
,
B. P.
Pritchard
,
B. R.
Brooks
,
H. F.
Schaefer
III
,
A. Y.
Sokolov
,
K.
Patkowski
,
A. E.
DePrince
III
,
U.
Bozkaya
,
R. A.
King
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
, “
PSI4 1.4: Open-source software for high-throughput quantum chemistry
,”
J. Chem. Phys.
152
,
184108
(
2020
).
54.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Kuś
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H. L.
Woodcock
III
,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
, Jr.
,
H.
Do
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W.
Hanson-Heine
,
P. H.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A. D.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
E.
Neuscamman
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
O’Neill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
S. M.
Sharada
,
S.
Sharma
,
D. W.
Small
,
A.
Sodt
,
T.
Stein
,
D.
Stück
,
Y.-C.
Su
,
A. J.
Thom
,
T.
Tsuchimochi
,
V.
Vanovschi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
J.
Yang
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhao
,
B. R.
Brooks
,
G. K.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
III
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
III
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xu
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T. V.
Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M.
Gill
, and
M.
Head-Gordon
, “
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
,”
Mol. Phys.
113
,
184
215
(
2015
).
55.
F.
Manby
,
T.
Miller
,
P.
Bygrave
,
F.
Ding
,
T.
Dresselhaus
,
F.
Batista-Romero
,
A.
Buccheri
,
C.
Bungey
,
S.
Lee
,
R.
Meli
et al, “
Entos: A quantum molecular simulation package
,” in
ChemRxiv
(Cambridge Open Engage,
2019
).
56.
I. S.
Ufimtsev
and
T. J.
Martínez
, “
Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics
,”
J. Chem. Theory Comput.
5
,
2619
2628
(
2009
).
57.
S.
Seritan
,
C.
Bannwarth
,
B. S.
Fales
,
E. G.
Hohenstein
,
S. I. L.
Kokkila-Schumacher
,
N.
Luehr
,
J. W.
Snyder
,
C.
Song
,
A. V.
Titov
,
I. S.
Ufimtsev
, and
T. J.
Martínez
, “
TeraChem: Accelerating electronic structure and ab initio molecular dynamics with graphical processing units
,”
J. Chem. Phys.
152
,
224110
(
2020
).
58.
F.
Furche
,
R.
Ahlrichs
,
C.
Hättig
,
W.
Klopper
,
M.
Sierka
, and
F.
Weigend
, “
Turbomole
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
91
100
(
2014
).
59.
S. G.
Balasubramani
,
G. P.
Chen
,
S.
Coriani
,
M.
Diedenhofen
,
M. S.
Frank
,
Y. J.
Franzke
,
F.
Furche
,
R.
Grotjahn
,
M. E.
Harding
,
C.
Hättig
,
A.
Hellweg
,
B.
Helmich-Paris
,
C.
Holzer
,
U.
Huniar
,
M.
Kaupp
,
A.
Marefat Khah
,
S.
Karbalaei Khani
,
T.
Müller
,
F.
Mack
,
B. D.
Nguyen
,
S. M.
Parker
,
E.
Perlt
,
D.
Rappoport
,
K.
Reiter
,
S.
Roy
,
M.
Rückert
,
G.
Schmitz
,
M.
Sierka
,
E.
Tapavicza
,
D. P.
Tew
,
C.
van Wüllen
,
V. K.
Voora
,
F.
Weigend
,
A.
Wodyński
, and
J. M.
Yu
, “
TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations
,”
J. Chem. Phys.
152
,
184107
(
2020
).
60.
J. J. P.
Stewart
, MOPAC: Semiempirical quantum chemistry. For the current version, see http://OpenMOPAC.net/; accessed January 2020, for Stewart Computational Chemistry, Colorado Springs, CO.
61.
C.
Bannwarth
,
E.
Caldeweyher
,
S.
Ehlert
,
A.
Hansen
,
P.
Pracht
,
J.
Seibert
,
S.
Spicher
, and
S.
Grimme
, “
Extended tight-binding quantum chemistry methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1493
(
2021
).
62.
P.
Eastman
,
J.
Swails
,
J. D.
Chodera
,
R. T.
McGibbon
,
Y.
Zhao
,
K. A.
Beauchamp
,
L.-P.
Wang
,
A. C.
Simmonett
,
M. P.
Harrigan
,
C. D.
Stern
,
R. P.
Wiewiora
,
B. R.
Brooks
, and
V. S.
Pande
, “
OpenMM 7: Rapid development of high performance algorithms for molecular dynamics
,”
PLoS Comput. Biol.
13
,
e1005659
(
2017
).
63.
G.
Landrum
, RDKIT: Cheminformatics and machine-learning software in C++ and Python. For the current version, see 10.5281/zenodo.591637; accessed January 2020. For the originating project, see https://www.rdkit.org/.
64.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, DFTD3: Dispersion correction for DFT, Hartree–Fock, and semi-empirical quantum chemical methods. For the current version, see https://github.com/loriab/dftd3; accessed January 2020. For the originating project, see https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/dft-d3.
65.
S.
Ehrlich
and
E.
Caldewayher
, DFTD4: Generally applicable atomic-charge dependent London dispersion correction. For the current version, see https://github.com/dftd4/dftd4; accessed April 2021.
66.
E.
Caldeweyher
,
C.
Bannwarth
, and
S.
Grimme
, “
Extension of the D3 dispersion coefficient model
,”
J. Chem. Phys.
147
,
034112
(
2017
).
67.
H.
Kruse
and
S.
Grimme
, GCP: Geometrical counterpoise correction for DFT and Hartree–Fock quantum chemical methods. For the current version, see https://www.chemie.uni-bonn.de/pctc/mulliken-center/software/gcp/gcp; accessed January 2020.
68.
H.
Kruse
and
S.
Grimme
, “
A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree–Fock and density functional theory calculations for large systems
,”
J. Chem. Phys.
136
,
154101
(
2012
).
69.
C.
Greenwell
, MP2D: A program for calculating the MP2D dispersion energy. For the current version, see https://github.com/Chandemonium/MP2D; accessed January 2020.
70.
J.
Řezáč
,
C.
Greenwell
, and
G. J. O.
Beran
, “
Accurate noncovalent interactions via dispersion-corrected second-order Møller–Plesset perturbation theory
,”
J. Chem. Theory Comput.
14
,
4711
4721
(
2018
).
71.
X.
Gao
, TORCHANI: Accurate neural network potential on PyTorch. For the current version, see https://github.com/aiqm/torchani; accessed January 2020.
72.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost
,”
Chem. Sci.
8
,
3192
3203
(
2017
).
73.
X.
Gao
,
F.
Ramezanghorbani
,
O.
Isayev
,
J. S.
Smith
, and
A. E.
Roitberg
, “
TorchANI: A free and open source PyTorch-based deep learning implementation of the ANI neural network potentials
,”
J. Chem. Inf. Model.
60
,
3408
3415
(
2020
).
74.
L.
Frediani
,
E.
Fossgaard
,
T.
Flå
, and
K.
Ruud
, “
Fully adaptive algorithms for multivariate integral equations using the non-standard form and multiwavelets with applications to the Poisson and bound-state Helmholtz kernels in three dimensions
,”
Mol. Phys.
111
,
1143
1160
(
2013
).
75.
S.
Hirata
, “
Tensor contraction engine: Abstraction and automated parallel implementation of configuration-interaction, coupled-cluster, and many-body perturbation theories
,”
J. Phys. Chem. A
107
,
9887
9897
(
2003
).
76.
PROTOCOL BUFFERS: A language-neutral, platform-neutral extensible mechanism for serializing structured data. For the current version, see https://developers.google.com/protocol-buffers/docs/reference/proto3-spec; accessed May 2021.
77.
S.
Seritan
,
K.
Thompson
, and
T. J.
Martínez
, “
TeraChem cloud: A high-performance computing service for scalable distributed GPU-accelerated electronic structure calculations
,”
J. Chem. Inf. Model.
60
,
2126
2137
(
2020
).
78.
S.
Seritan
,
C. B.
Hicks
, and
J. E.
Ford
, TCPB: Python client for TeraChem’s protobuf server mode. For the current version, see https://github.com/mtzgroup/tcpb-client; accessed May 2021.
79.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
,
1787
1799
(
2006
).
80.
D. G. A.
Smith
,
L. A.
Burns
,
K.
Patkowski
, and
C. D.
Sherrill
, “
Revised damping parameters for the D3 dispersion correction to density functional theory
,”
J. Phys. Chem. Lett.
7
,
2197
2203
(
2016
).
81.
E.
Caldeweyher
and
J. G.
Brandenburg
, “
Simplified DFT methods for consistent structures and energies of large systems
,”
J. Phys.: Condens. Matter
30
,
213001
(
2018
).
82.
See https://openforcefield.org for OpenForceField.
83.
L.-P.
Wang
,
D. G. A.
Smith
, and
Y.
Qiu
, GEOMETRIC: A geometry optimization code that includes the TRIC coordinate system. For the current version, see https://github.com/leeping/geomeTRIC; accessed January 2020.
84.
L.-P.
Wang
and
C.
Song
, “
Geometry optimization made simple with translation and rotation coordinates
,”
J. Chem. Phys.
144
,
214108
(
2016
).
85.
A.
Heide
and
R. A.
King
, OptKing: A Python version of the Psi4 geometry optimizer. For the current version, see https://github.com/psi-rking/optking; accessed January 2020.
86.
J.
Hermann
, PYBERNY: Molecular structure optimizer. For the current version, see https://github.com/jhrmnn/pyberny; accessed January 2020. Also, for Version 0.6.2 https://doi.org/10.5281/zenodo.3695038.
87.

The finite difference and vibrational analysis procedures have been extracted from PSI4 as an independent module in QCDB. For the moment, there is a lingering library dependence on PSI4 for SALCs, so it, too, must be installed (as indicated in Fig. 3).

88.
B. H.
Wells
and
S.
Wilson
, “
van der Waals interaction potentials: Many-body basis set superposition effects
,”
Chem. Phys. Lett.
101
,
429
434
(
1983
).
89.
P.
Valiron
and
I.
Mayer
, “
Hierarchy of counterpoise corrections for N-body clusters: Generalization of the Boys-Bernardi scheme
,”
Chem. Phys. Lett.
275
,
46
55
(
1997
).
90.
I.
Kaliman
, LIBEFP: Parallel implementation of the effective fragment potential method. For the current version, see https://github.com/ilyak/libefp; accessed January 2020.
91.
I. A.
Kaliman
and
L. V.
Slipchenko
, “
LIBEFP: A new parallel implementation of the effective fragment potential method as a portable software library
,”
J. Comput. Chem.
34
,
2284
2292
(
2013
).
92.
C. I.
Bayly
,
P.
Cieplak
,
W.
Cornell
, and
P. A.
Kollman
, “
A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model
,”
J. Phys. Chem.
97
,
10269
10280
(
1993
).
93.
A.
Alenaizan
, RESP: A restrained electrostatic potential (RESP) plugin to PSI4. For the current version, see https://github.com/cdsgroup/resp; accessed January 2020.
94.
A.
Alenaizan
,
L. A.
Burns
, and
C. D.
Sherrill
, “
Python implementation of the restrained electrostatic potential charge model
,”
Int. J. Quantum Chem.
120
,
e26035
(
2020
).
95.
C. H.
Borca
, CRYSTALATTE: Automating the calculation of crystal lattice energies. For the current version, see https://github.com/carlosborca/CrystaLattE; accessed January 2020.
96.
C. H.
Borca
,
B. W.
Bakr
,
L. A.
Burns
, and
C. D.
Sherrill
, “
CrystaLattE: Automated computation of lattice energies of organic crystals exploiting the many-body expansion to achieve dual-level parallelism
,”
J. Chem. Phys.
151
,
144103
(
2019
).
97.

The QCElemental molecule parsing machinery is also used for PSI4, so its documentation and http://docs.qcarchive.molssi.org/projects/QCElemental/en/latest/model_molecule.html can be helpful. The following describes the particular case in the text. In Snippet 1, the units bohr string indicates that the Cartesian coordinates are already in QCSchema’s required atomic units, so these are unchanged in Snippet 2’s geometry field. The Snippet 1 strings O, H, and Ne specify the elements and are processed into Snippet 2 fields atomic_numbers and symbols. The prefix character @ to neon in Snippet 1 indicates it’s a ghost atom, so the Snippet 2 field real shows a T, T, F pattern. Gh(22Ne) would have been equivalent to the given @22Ne. The prefix string 22 to neon in Snippet 1 specifies the mass number, much like a nuclide symbol. Thus the Snippet 2 fields mass_numbers and masses use default values for the oxygen and hydrogen but 22Ne values for neon. @Ne@21.99138511 to specify the mass value would have been equivalent. The strings no_com and no_reorient were not given in Snippet 1, so the fields fix_com and fix_orientation in Snippet 2 are F, meaning that the origin and frame of geometry are incidental to the Molecule specification. A user label like O1 or O_bigbasis is parsed, but since Snippet 1 doesn’t include any, the atom_labels field of Snippet 2 are empty strings. The--line of Snippet 1 indicates there are two fragments in the molecule, the first with two atoms and the second with one. This is encoded in the fragments field of Snippet 2. No charge/multiplicity lines are present in Snippet 1, either overall or per-fragment, so defaults are assigned. The second fragment is all ghosts and so is a neutral singlet. Electrons are never added or removed to the specification, so the first fragment is assigned neutral doublet, and the overall molecule is a neutral doublet. These defaults are reflected in the Snippet 2 fields molecular_charge, molecular_multiplicity, fragment_charges, and fragment_multiplicities. The string parser also stamps the schema name and provenance information in Snippet 2.

98.

In full, the command requests a Dunning 5ζ to 6ζ Helgaker-formula extrapolation of the MP2 correlation gradient performed by PSI4 with a coupled-cluster singles and doubles excitations correction (CCSD−MP2) at the Dunning triple-ζ to quadruple-ζ Helgaker-formula extrapolation gradient performed by NWCHEM with a CC up to quadruples excitations at cc-pVDZ performed by CFOUR, all atop an implicit 6-ζ Hartree–Fock.

99.
B. P.
Pritchard
,
D.
Altarawy
,
B.
Didier
,
T. D.
Gibson
, and
T. L.
Windus
, “
New basis set exchange: An open, up-to-date resource for the molecular sciences community
,”
J. Chem. Inf. Model.
59
,
4814
4820
(
2019
).
100.
I.
Naoki
, MESSAGEPACK-PYTHON: MessagePack serializer implementation for Python. For the current version, see https://github.com/msgpack/msgpack-python; accessed January 2020. For the originating project, see https://msgpack.org/.
101.
L.
Bytautas
,
N.
Matsunaga
,
T.
Nagata
,
M. S.
Gordon
, and
K.
Ruedenberg
, “
Accurate ab initio potential energy curve of F2. III. The vibration rotation spectrum
,”
J. Chem. Phys.
127
,
204313
(
2007
).
102.
J. M. L.
Martin
, “
Benchmark ab initio potential curves for the light diatomic hydrides. Unusually large nonadiabatic effects in BeH and BH
,”
Chem. Phys. Lett.
283
,
283
293
(
1998
).
103.
B.
Temelso
,
E. F.
Valeev
, and
C. D.
Sherrill
, “
A comparison of one-particle basis set completeness, higher-order electron correlation, relativistic effects, and adiabatic corrections for spectroscopic constants of BH, CH+, and NH
,”
J. Phys. Chem. A
108
,
3068
3075
(
2004
).
104.
J. S.
Boschen
,
D.
Theis
,
K.
Ruedenberg
, and
T. L.
Windus
, “
Accurate ab initio potential energy curves and spectroscopic properties of the four lowest singlet states of C2
,”
Theor. Chem. Acc.
133
,
1425
(
2013
).
105.
J. D.
Bender
,
S.
Doraiswamy
,
D. G.
Truhlar
, and
G. V.
Candler
, “
Potential energy surface fitting by a statistically localized, permutationally invariant, local interpolating moving least squares method for the many-body potential: Method and application to N4
,”
J. Chem. Phys.
140
,
054302
(
2014
).
106.
W. T. M. L.
Fernando
and
P. F.
Bernath
, “
Fourier transform spectroscopy of the A1Π-X1Σ+ transition of BH and BD
,”
J. Mol. Spectrosc.
145
,
392
402
(
1991
).
107.
K. P.
Huber
and
G.
Herzberg
,
Constants of Diatomic Molecules
(
Van Nostrand Reinhold
,
New York
,
1979
).
108.
M.
Douay
,
R.
Nietmann
, and
P. F.
Bernath
, “
New observations of the A1ΠuX1Σg+ transition (Phillips system) of C2
,”
J. Mol. Spectrosc.
131
,
250
260
(
1988
).
You do not currently have access to this content.