Metal/water interfaces catalyze a large variety of chemical reactions, which often involve small hydrophobic molecules. In the present theoretical study, we show that hydrophobic hydration at the Au(100)/water interface actively contributes to the reaction free energy by up to several hundreds of meV. This occurs either in adsorption/desorption reaction steps, where the vertical distance from the surface changes in going from reactants to products, or in addition and elimination reaction steps, where two small reactants merge into a larger product and vice versa. We find that size and position effects cannot be captured by treating them as independent variables. Instead, their simultaneous evaluation allows us to map the important contributions, and we provide examples of their combinations for which interfacial reactions can be either favored or disfavored. By taking a N2 and a CO2 reduction pathway as test cases, we show that explicitly considering hydrophobic effects is important for the selectivity and rate of these relevant interfacial processes.

1.
S.
Nitopi
,
E.
Bertheussen
,
S. B.
Scott
,
X.
Liu
,
A. K.
Engstfeld
,
S.
Horch
,
B.
Seger
,
I. E. L.
Stephens
,
K.
Chan
,
C.
Hahn
,
J. K.
Nørskov
,
T. F.
Jaramillo
, and
I.
Chorkendorff
, “
Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte
,”
Chem. Rev.
119
,
7610
7672
(
2019
).
2.
J. D.
Blakemore
,
R. H.
Crabtree
, and
G. W.
Brudvig
, “
Molecular catalysts for water oxidation
,”
Chem. Rev.
115
,
12974
13005
(
2015
).
3.
G.
Qing
,
R.
Ghazfar
,
S. T.
Jackowski
,
F.
Habibzadeh
,
M. M.
Ashtiani
,
C.-P.
Chen
,
M. R.
Smith
, and
T. W.
Hamann
, “
Recent advances and challenges of electrocatalytic N2 reduction to ammonia
,”
Chem. Rev.
120
,
5437
5516
(
2020
).
4.
F.
Meemken
and
A.
Baiker
, “
Recent progress in heterogeneous asymmetric hydrogenation of C=O and C=C bonds on supported noble metal catalysts
,”
Chem. Rev.
117
,
11522
11569
(
2017
).
5.
L.
Liu
and
A.
Corma
, “
Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles
,”
Chem. Rev.
118
,
4981
5079
(
2018
).
6.
Q.
Gu
,
P.
Sautet
, and
C.
Michel
, “
Unraveling the role of base and catalyst polarization in alcohol oxidation on Au and Pt in water
,”
ACS Catal.
8
,
11716
11721
(
2018
).
7.
A. A.
Peterson
and
J. K.
Nørskov
, “
Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts
,”
J. Phys. Chem. Lett.
3
,
251
258
(
2012
).
8.
F.
Abild-Pedersen
,
J.
Greeley
,
F.
Studt
,
J.
Rossmeisl
,
T. R.
Munter
,
P. G.
Moses
,
E.
Skúlason
,
T.
Bligaard
, and
J. K.
Nørskov
, “
Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces
,”
Phys. Rev. Lett.
99
,
016105
(
2007
).
9.
F.
Calle-Vallejo
,
J. I.
Martínez
,
J. M.
García-Lastra
,
J.
Rossmeisl
, and
M. T. M.
Koper
, “
Physical and chemical nature of the scaling relations between adsorption energies of atoms on metal surfaces
,”
Phys. Rev. Lett.
108
,
116103
(
2012
).
10.
F.
Calle-Vallejo
,
D.
Loffreda
,
M. T. M.
Koper
, and
P.
Sautet
, “
Introducing structural sensitivity into adsorption–energy scaling relations by means of coordination numbers
,”
Nat. Chem.
7
,
403
410
(
2012
).
11.
P. R.
Davies
, “
On the role of water in heterogeneous catalysis: A tribute to Professor M. Wyn Roberts
,”
Top. Catal.
59
,
671
677
(
2016
).
12.
C.-R.
Chang
,
Z.-Q.
Huang
, and
J.
Li
, “
The promotional role of water in heterogeneous catalysis: Mechanism insights from computational modeling
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
6
,
679
693
(
2016
).
13.
T. V.
Andrushkevich
and
E. V.
Ovchinnikova
, “
The role of water in selective heterogeneous catalytic oxidation of hydrocarbons
,”
Mol. Catal.
484
,
110734
(
2020
).
14.
W.
Luo
,
X.
Nie
,
M. J.
Janik
, and
A.
Asthagiri
, “
Facet dependence of CO2 reduction paths on Cu electrodes
,”
ACS Catal.
6
,
219
229
(
2016
).
15.
G.
Marcandalli
,
A.
Goyal
, and
M. T. M.
Koper
, “
Electrolyte effects on the faradaic efficiency of CO2 reduction to CO on a gold electrode
,”
ACS Catal.
11
,
4936
4945
(
2021
).
16.
M.
Ahmed
,
M.
Blum
,
E. J.
Crumlin
,
P. L.
Geissler
,
T.
Head-Gordon
,
D. T.
Limmer
,
K. K.
Mandadapu
,
R. J.
Saykally
, and
K. R.
Wilson
, “
Molecular properties and chemical transformations near interfaces
,”
J. Phys. Chem. B
125
,
9037
9051
(
2021
).
17.
A. J.
Garza
,
A. T.
Bell
, and
M.
Head-Gordon
, “
Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products
,”
ACS Catal.
8
,
1490
1499
(
2018
).
18.
S.
Hanselman
,
M. T. M.
Koper
, and
F.
Calle-Vallejo
, “
Computational comparison of late transition metal (100) surfaces for the electrocatalytic reduction of CO to C2 species
,”
ACS Energy Lett.
3
,
1062
1067
(
2018
).
19.
T. K.
Todorova
,
M. W.
Schreiber
, and
M.
Fontecave
, “
Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts
,”
ACS Catal.
10
,
1754
1768
(
2020
).
20.
I.
Ledezma-Yanez
,
E. P.
Gallent
,
M. T. M.
Koper
, and
F.
Calle-Vallejo
, “
Structure-sensitive electroreduction of acetaldehyde to ethanol on copper and its mechanistic implications for CO and CO2 reduction
,”
Catal. Today
262
,
90
94
(
2016
).
21.
A.
Bagger
,
W.
Ju
,
A. S.
Varela
,
P.
Strasser
, and
J.
Rossmeisl
, “
Electrochemical CO2 reduction: A classification problem
,”
ChemPhysChem
18
,
3266
3273
(
2017
).
22.
D. T.
Limmer
,
A. P.
Willard
,
P.
Madden
, and
D.
Chandler
, “
Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
4200
4205
(
2013
).
23.
A.
Serva
,
M.
Salanne
,
M.
Havenith
, and
S.
Pezzotti
, “
Size dependence of hydrophobic hydration at electrified gold/water interfaces
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2023867118
(
2021
).
24.
T.
Cheng
,
H.
Xiao
, and
W. A.
Goddard
, “
Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
1795
1800
(
2017
).
25.
H. H.
Kristoffersen
and
K.
Chan
, “
Towards constant potential modeling of CO-CO coupling at liquid water-Cu(100) interfaces
,”
J. Catal.
396
,
251
260
(
2021
).
26.
X.
Liu
,
P.
Schlexer
,
J.
Xiao
,
Y.
Ji
,
L.
Wang
,
R. B.
Sandberg
,
M.
Tang
,
K. S.
Brown
,
H.
Peng
,
S.
Ringe
,
C.
Hahn
,
T. F.
Jaramillo
,
J. K.
Nørskov
, and
K.
Chan
, “
pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper
,”
Nat. Commun.
10
,
32
(
2019
).
27.
A.
Bagger
,
L.
Arnarson
,
M. H.
Hansen
,
E.
Spohr
, and
J.
Rossmeisl
, “
Electrochemical CO reduction: A property of the electrochemical interface
,”
J. Am. Chem. Soc.
141
,
1506
1514
(
2019
).
28.
K.
Jiang
,
R. B.
Sandberg
,
A. J.
Akey
,
X.
Liu
,
D. C.
Bell
,
J. K.
Nørskov
,
K.
Chan
, and
H.
Wang
, “
Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction
,”
Nat. Catal.
1
,
111
119
(
2018
).
29.
F.
Creazzo
and
S.
Luber
, “
Explicit solvent effects on (110) ruthenium oxide surface wettability: Structural, electronic and mechanical properties of rutile RuO2 by means of spin-polarized DFT-MD
,”
Appl. Surf. Sci.
570
,
150993
(
2021
).
30.
R.
Khatib
,
A.
Kumar
,
S.
Sanvito
,
M.
Sulpizi
, and
C. S.
Cucinotta
, “
The nanoscale structure of the Pt-water double layer under bias revealed
,”
Electrochim. Acta
391
,
138875
(
2021
).
31.
N.
Abidi
,
K. R. G.
Lim
,
Z. W.
Seh
, and
S. N.
Steinmann
, “
Atomistic modeling of electrocatalysis: Are we there yet?
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1499
(
2021
).
32.
K.
Lum
,
D.
Chandler
, and
J. D.
Weeks
, “
Hydrophobicity at small and large length scales
,”
J. Phys. Chem. B
103
,
4570
4577
(
1999
).
33.
D.
Chandler
, “
Interfaces and the driving force of hydrophobic assembly
,”
Nature
437
,
640
647
(
2005
).
34.
A.
Marin-Laflèche
,
M.
Haefele
,
L.
Scalfi
,
A.
Coretti
,
T.
Dufils
,
G.
Jeanmairet
,
S. K.
Reed
,
A.
Serva
,
R.
Berthin
,
C.
Bacon
,
S.
Bonella
,
B.
Rotenberg
,
P. A.
Madden
, and
M.
Salanne
, “
MetalWalls: A classical molecular dynamics software dedicated to the simulation of electrochemical systems
,”
J. Open Source Software
5
,
2373
(
2020
).
35.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
36.
A. P.
Willard
,
S. K.
Reed
,
P. A.
Madden
, and
D.
Chandler
, “
Water at an electrochemical interface—A simulation study
,”
Faraday Discuss.
141
,
423
441
(
2009
).
37.
R.
Akiyama
and
F.
Hirata
, “
Theoretical study for water structure at highly ordered surface: Effect of surface structure
,”
J. Chem. Phys.
108
,
4904
4911
(
1998
).
38.
S.
Alfarano
,
S.
Pezzotti
,
C.
Stein
,
Z.
Lin
,
F.
Sebastiani
,
S.
Funke
 et al., “
Stripping off of the hydration shells in the double layer formation: Water networks matter
,”
Proc. Natl. Acad. Sci. USA
118
,
e2108568118
(
2021
).
39.
D.
Chandler
and
P.
Varilly
, “
Lectures on molecular- and nano-scale fluctuations in water
,” in
Proceedings of the International School of Physics “Enrico Fermi”
(
IOS, Amsterdam,
,
2012
), Vol. 176, pp.
75
111
.
40.
D.
Bao
,
Q.
Zhang
,
F.-L.
Meng
,
H.-X.
Zhong
,
M.-M.
Shi
,
Y.
Zhang
,
J.-M.
Yan
,
Q.
Jiang
, and
X.-B.
Zhang
, “
Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle
,”
Adv. Mater.
29
,
1604799
(
2017
).
41.
K.
Sharma
and
N. P.
Adhikari
, “
Temperature dependence of diffusion coefficient of nitrogen gas in water: A molecular dynamics study
,”
Int. J. Mod. Phys. B
28
,
1450084
(
2014
).
42.
D.
Jiao
and
S. B.
Rempe
, “
CO2 solvation free energy using quasi-chemical theory
,”
J. Chem. Phys.
134
,
224506
(
2011
).
43.
T. S.
van Erp
and
E. J.
Meijer
, “
Ab initio molecular dynamics study of aqueous solvation of ethanol and ethylene
,”
J. Chem. Phys.
118
,
8831
8840
(
2003
).
44.
D. T.
Kallikragas
,
K. I.
Choudhry
,
A. Y.
Plugatyr
, and
I. M.
Svishchev
, “
Diffusivity and hydration of hydrazine in liquid and supercritical water through molecular dynamics simulations and split-flow pulse injection experiments
,”
J. Chem. Phys.
139
,
134507
(
2013
).
45.
N.
Singh
and
C. T.
Campbell
, “
A simple bond-additivity model explains large decreases in heats of adsorption in solvents versus gas phase: A case study with phenol on Pt(111) in water
,”
ACS Catal.
9
,
8116
8127
(
2019
).
46.
P.
Clabaut
,
B.
Schweitzer
,
A. W.
Götz
,
C.
Michel
, and
S. N.
Steinmann
, “
Solvation free energies and adsorption energies at the metal/water interface from hybrid quantum-mechanical/molecular mechanics simulations
,”
J. Chem. Theory Comput.
16
,
6539
6549
(
2020
).
47.
J. H.
Montoya
,
C.
Shi
,
K.
Chan
, and
J. K.
Nørskov
, “
Theoretical insights into a CO dimerization mechanism in CO2 electroreduction
,”
J. Phys. Chem. Lett.
6
,
2032
2037
(
2015
).
48.
Y.
Yao
,
S.
Zhu
,
H.
Wang
,
H.
Li
, and
M.
Shao
, “
A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces
,”
J. Am. Chem. Soc.
140
,
1496
1501
(
2018
).
49.
S.
Ringe
,
C. G.
Morales-Guio
,
L. D.
Chen
,
M.
Fields
,
T. F.
Jaramillo
,
C.
Hahn
, and
K.
Chan
, “
Double layer charging driven carbon dioxide adsorption limits the rate of electrochemical carbon dioxide reduction on gold
,”
Nat. Commun.
11
,
33
(
2020
).
50.
X.
Qin
,
T.
Vegge
, and
H. A.
Hansen
, “
CO2 activation at Au(110)–water interfaces: An ab initio molecular dynamics study
,”
J. Chem. Phys.
155
,
134703
(
2021
).
51.
S.
Zhao
,
R.
Jin
, and
R.
Jin
, “
Opportunities and challenges in CO2 reduction by gold- and silver-based electrocatalysts: From bulk metals to nanoparticles and atomically precise nanoclusters
,”
ACS Energy Lett.
3
,
452
462
(
2018
).
52.
A.
Goyal
,
G.
Marcandalli
,
V. A.
Mints
, and
M. T. M.
Koper
, “
Competition between CO2 reduction and hydrogen evolution on a gold electrode under well-defined mass transport conditions
,”
J. Am. Chem. Soc.
142
,
4154
4161
(
2020
).
53.
S.
Asakura
and
F.
Oosawa
, “
On interaction between two bodies immersed in a solution of macromolecules
,”
J. Chem. Phys.
22
,
1255
1256
(
1954
).
54.
K.
Binder
,
P.
Virnau
, and
A.
Statt
, “
Perspective: The Asakura Oosawa model: A colloid prototype for bulk and interfacial phase behavior
,”
J. Chem. Phys.
141
,
140901
(
2014
).

Supplementary Material

You do not currently have access to this content.