The performance of catalysts depends on their nanoscale properties, and local variations in structure and composition can have a dramatic impact on the catalytic reactivity. Therefore, probing the localized reactivity of catalytic surfaces using high spatial resolution vibrational spectroscopy, such as infrared (IR) nanospectroscopy and tip-enhanced Raman spectroscopy, is essential for mapping their reactivity pattern. Two fundamentally different scanning probe IR nanospectroscopy techniques, namely, scattering-type scanning near-field optical microscopy (s-SNOM) and atomic force microscopy-infrared spectroscopy (AFM-IR), provide the capabilities for mapping the reactivity pattern of catalytic surfaces with a spatial resolution of ∼20 nm. Herein, we compare these two techniques with regard to their applicability for probing the vibrational signature of reactive molecules on catalytic nanoparticles. For this purpose, we use chemically addressable self-assembled molecules on Au nanoparticles as model systems. We identified significant spectral differences depending on the measurement technique, which originate from the fundamentally different working principles of the applied methods. While AFM-IR spectra provided information from all the molecules that were positioned underneath the tip, the s-SNOM spectra were more orientation-sensitive. Due to its field-enhancement factor, the s-SNOM spectra showed higher vibrational signals for dipoles that were perpendicularly oriented to the surface. The s-SNOM sensitivity to the molecular orientation influenced the amplitude, position, and signal-to-noise ratio of the collected spectra. Ensemble-based IR measurements verified that differences in the localized IR spectra stem from the enhanced sensitivity of s-SNOM measurements to the adsorption geometry of the probed molecules.

1.
I. L. C.
Buurmans
and
B. M.
Weckhuysen
,
Nat. Chem.
4
(
11
),
873
886
(
2012
).
2.
S.
Dery
,
E.
Amit
, and
E.
Gross
,
Top. Catal.
61
(
9
),
923
939
(
2018
).
3.
E.
de Smit
,
I.
Swart
,
J. F.
Creemer
,
G. H.
Hoveling
,
M. K.
Gilles
,
T.
Tyliszczak
,
P. J.
Kooyman
,
H. W.
Zandbergen
,
C.
Morin
,
B. M.
Weckhuysen
, and
F. M. F.
de Groot
,
Nature
456
(
7219
),
222
225
(
2008
).
4.
C.
Lamberti
,
A.
Zecchina
,
E.
Groppo
, and
S.
Bordiga
,
Chem. Soc. Rev.
39
(
12
),
4951
5001
(
2010
).
5.
F.
Meirer
,
D. T.
Morris
,
S.
Kalirai
,
Y.
Liu
,
J. C.
Andrews
, and
B. M.
Weckhuysen
,
J. Am. Chem. Soc.
137
(
1
),
102
105
(
2015
).
6.
F.
Meirer
and
B. M.
Weckhuysen
,
Nat. Rev. Mater.
3
(
9
),
324
340
(
2018
).
7.
D.
Albinsson
,
A.
Boje
,
S.
Nilsson
,
C.
Tiburski
,
A.
Hellman
,
H.
Ström
, and
C.
Langhammer
,
Nat. Commun.
11
(
1
),
4832
(
2020
).
8.
J.
Dou
,
Z.
Sun
,
A. A.
Opalade
,
N.
Wang
,
W.
Fu
, and
F.
Tao
,
Chem. Soc. Rev.
46
(
7
),
2001
2027
(
2017
).
9.
X.
Li
,
X.
Yang
,
J.
Zhang
,
Y.
Huang
, and
B.
Liu
,
ACS Catal.
9
(
3
),
2521
2531
(
2019
).
10.
X.
Mao
,
C.
Liu
,
M.
Hesari
,
N.
Zou
, and
P.
Chen
,
Nat. Chem.
11
(
8
),
687
694
(
2019
).
11.
B. M.
Weckhuysen
,
Natl. Sci. Rev.
2
(
2
),
147
149
(
2015
).
12.
H. L.
Xin
,
E. A.
Pach
,
R. E.
Diaz
,
E. A.
Stach
,
M.
Salmeron
, and
H.
Zheng
,
ACS Nano
6
(
5
),
4241
4247
(
2012
).
13.
L.
Luo
,
M. H.
Engelhard
,
Y.
Shao
, and
C.
Wang
,
ACS Catal.
7
(
11
),
7658
7664
(
2017
).
14.
T. W.
Hansen
and
J. B.
Wagner
,
Controlled Atmosphere Transmission Electron Microscopy
(
Springer International Publishing
,
Switzerland
,
2016
), pp.
213
235
.
15.
X.
Ye
,
J. E.
Schmidt
,
R. P.
Wang
,
I. K.
Ravenhorst
,
R.
Oord
,
T.
Chen
,
F.
Groot
,
F.
Meirer
, and
B. M.
Weckhuysen
,
Angew. Chem., Int. Ed.
59
(
36
),
15610
15617
(
2020
).
16.
E.
Gross
,
X.-Z.
Shu
,
S.
Alayoglu
,
H. A.
Bechtel
,
M. C.
Martin
,
F. D.
Toste
, and
G. A.
Somorjai
,
J. Am. Chem. Soc.
136
(
9
),
3624
3629
(
2014
).
17.
M. C.
Martin
,
C.
Dabat-Blondeau
,
M.
Unger
,
J.
Sedlmair
,
D. Y.
Parkinson
,
H. A.
Bechtel
,
B.
Illman
,
J. M.
Castro
,
M.
Keiluweit
,
D.
Buschke
,
B.
Ogle
,
M. J.
Nasse
, and
C. J.
Hirschmugl
,
Nat. Methods
10
(
9
),
861
864
(
2013
).
18.
J.
Ryczkowski
,
Catal. Today
68
(
4
),
263
381
(
2001
).
19.
E.
Stavitski
and
B. M.
Weckhuysen
,
Chem. Soc. Rev.
39
(
12
),
4615
4625
(
2010
).
20.
E.
Gross
,
Surf. Sci.
648
,
136
140
(
2016
).
21.
S.
Dery
and
E.
Gross
,
Ambient Pressure Spectroscopy in Complex Chemical Environments
(
American Chemical Society
,
2021
), pp.
147
173
.
22.
H. A.
Bechtel
,
S. C.
Johnson
,
O.
Khatib
,
E. A.
Muller
, and
M. B.
Raschke
,
Surf. Sci. Rep.
75
(
3
),
100493
(
2020
).
23.
H. A.
Bechtel
,
E. A.
Muller
,
R. L.
Olmon
,
M. C.
Martin
, and
M. B.
Raschke
,
Proc. Natl. Acad. Sci. U. S. A.
111
(
20
),
7191
(
2014
).
24.
J. M.
Atkin
,
S.
Berweger
,
A. C.
Jones
, and
M. B.
Raschke
,
Adv. Phys.
61
(
6
),
745
842
(
2012
).
25.
M. B.
Raschke
and
C.
Lienau
,
Appl. Phys. Lett.
83
(
24
),
5089
5091
(
2003
).
26.
F.
Huth
,
A.
Govyadinov
,
S.
Amarie
,
W.
Nuansing
,
F.
Keilmann
, and
R.
Hillenbrand
,
Nano Lett.
12
(
8
),
3973
3978
(
2012
).
27.
F.
Keilmann
and
R.
Hillenbrand
,
Philos. Trans. R. Soc. London, Ser. A
362
(
1817
),
787
805
(
2004
).
28.
A.
Dazzi
,
F.
Glotin
, and
R.
Carminati
,
J. Appl. Phys.
107
(
12
),
124519
(
2010
).
29.
A.
Dazzi
and
C. B.
Prater
,
Chem. Rev.
117
(
7
),
5146
5173
(
2017
).
30.
A.
Dazzi
,
R.
Prazeres
,
F.
Glotin
, and
J. M.
Ortega
,
Opt. Lett.
30
(
18
),
2388
2390
(
2005
).
31.
A.
Dazzi
,
R.
Prazeres
,
F.
Glotin
, and
J. M.
Ortega
,
Ultramicroscopy
107
(
12
),
1194
1200
(
2007
).
32.
D.
Kurouski
,
A.
Dazzi
,
R.
Zenobi
, and
A.
Centrone
,
Chem. Soc. Rev.
49
(
11
),
3315
3347
(
2020
).
33.
A.
Centrone
,
Annu. Rev. Anal. Chem.
8
(
1
),
101
126
(
2015
).
34.
E.
Gross
,
Nano Res.
12
(
9
),
2200
2210
(
2019
).
35.
E. A.
Muller
,
B.
Pollard
, and
M. B.
Raschke
,
J. Phys. Chem. Lett.
6
(
7
),
1275
1284
(
2015
).
36.
B.
Knoll
and
F.
Keilmann
,
Opt. Commun.
182
(
4
),
321
328
(
2000
).
37.
T.
Hartmann
,
R.
Gatz
,
W.
Wiegräbe
,
A.
Kramer
,
A.
Hillebrand
,
K.
Lieberman
,
W.
Baumeister
, and
R.
Guckenberger
,
Near Field Optics
(
Springer
,
1993
), pp.
35
44
.
38.
J.
Karst
,
F.
Sterl
,
H.
Linnenbank
,
T.
Weiss
,
M.
Hentschel
, and
H.
Giessen
,
Sci. Adv.
6
(
19
),
eaaz0566
(
2020
).
39.
C.-F.
Wang
,
B.
Kafle
,
T. E.
Tesema
,
H.
Kookhaee
, and
T. G.
Habteyes
,
J. Phys. Chem. C
124
(
38
),
21018
21026
(
2020
).
40.
L.
Grossmann
,
B. T.
King
,
S.
Reichlmaier
,
N.
Hartmann
,
J.
Rosen
,
W. M.
Heckl
,
J.
Björk
, and
M.
Lackinger
,
Nat. Chem.
13
,
730
736
(
2021
).
41.
N.
Mrkyvkova
,
A.
Cernescu
,
Z.
Futera
,
A.
Nebojsa
,
A.
Dubroka
,
M.
Sojkova
,
M.
Hulman
,
E.
Majkova
,
M.
Jergel
,
P.
Siffalovic
, and
F.
Schreiber
,
J. Phys. Chem. C
125
(
17
),
9229
9235
(
2021
).
42.
Y.
Levratovsky
and
E.
Gross
,
Faraday Discuss.
188
,
345
353
(
2016
).
43.
S.
Dery
,
S.
Kim
,
D.
Feferman
,
H.
Mehlman
,
F. D.
Toste
, and
E.
Gross
,
Phys. Chem. Chem. Phys.
22
(
34
),
18765
18769
(
2020
).
44.
S.
Dery
,
S.
Kim
,
D.
Haddad
,
A.
Cossaro
,
A.
Verdini
,
L.
Floreano
,
F. D.
Toste
, and
E.
Gross
,
Chem. Sci.
9
(
31
),
6523
6531
(
2018
).
45.
C.-Y.
Wu
,
W. J.
Wolf
,
Y.
Levartovsky
,
H. A.
Bechtel
,
M. C.
Martin
,
F. D.
Toste
, and
E.
Gross
,
Nature
541
(
7638
),
511
515
(
2017
).
46.
S.
Dery
,
H.
Mehlman
,
L.
Hale
,
M.
Carmiel-Kostan
,
R.
Yemini
,
T.
Ben-Tzvi
,
M.
Noked
,
F. D.
Toste
, and
E.
Gross
,
ACS Catal.
11
(
15
),
9875
9884
(
2021
).
47.
R. M.
Silverstein
,
F. X.
Webster
,
D. J.
Kiemle
, and
D. L.
Bryce
,
Spectrometric Identification of Organic Compounds
, 8th ed. (
Wiley
,
Hoboken, NJ
,
2015
).
48.
E.
Amit
,
L.
Dery
,
S.
Dery
,
S.
Kim
,
A.
Roy
,
Q.
Hu
,
V.
Gutkin
,
H.
Eisenberg
,
T.
Stein
,
D.
Mandler
,
F.
Dean Toste
, and
E.
Gross
,
Nat. Commun.
11
(
1
),
5714
(
2020
).
49.
S.
Dery
,
S.
Kim
,
G.
Tomaschun
,
D.
Haddad
,
A.
Cossaro
,
A.
Verdini
,
L.
Floreano
,
T.
Klüner
,
F. D.
Toste
, and
E.
Gross
,
Chem. -Eur. J.
25
(
66
),
15067
15072
(
2019
).
50.
S.
Dery
,
S.
Kim
,
G.
Tomaschun
,
I.
Berg
,
D.
Feferman
,
A.
Cossaro
,
A.
Verdini
,
L.
Floreano
,
T.
Klüner
,
F. D.
Toste
, and
E.
Gross
,
J. Phys. Chem. Lett.
10
(
17
),
5099
5104
(
2019
).
51.
M.
Makosch
,
W.-I.
Lin
,
V.
Bumbálek
,
J.
,
J. W.
Medlin
,
K.
Hungerbühler
, and
J. A.
van Bokhoven
,
ACS Catal.
2
(
10
),
2079
2081
(
2012
).
52.
G.
Richner
,
J. A.
van Bokhoven
,
Y.-M.
Neuhold
,
M.
Makosch
, and
K.
Hungerbühler
,
Phys. Chem. Chem. Phys.
13
(
27
),
12463
12471
(
2011
).
53.
S.
Dery
,
P.
Bellotti
,
T.
Ben-Tzvi
,
M.
Freitag
,
T.
Shahar
,
A.
Cossaro
,
A.
Verdini
,
L.
Floreano
,
F.
Glorius
, and
E.
Gross
,
Langmuir
37
(
33
),
10029
10035
(
2021
).
54.
H.
Wang
,
S.
Chen
,
L.
Li
, and
S.
Jiang
,
Langmuir
21
(
7
),
2633
2636
(
2005
).
55.
M. A.
Ramin
,
G.
Le Bourdon
,
K.
Heuzé
,
M.
Degueil
,
C.
Belin
,
T.
Buffeteau
,
B.
Bennetau
, and
L.
Vellutini
,
Langmuir
28
(
51
),
17672
17680
(
2012
).

Supplementary Material

You do not currently have access to this content.