Recent experiments have shown that the repulsive force between atomically flat, like-charged surfaces confining room-temperature ionic liquids or concentrated electrolytes exhibits an anomalously large decay length. In our previous publication [J. Zeman, S. Kondrat, and C. Holm, Chem. Commun. 56, 15635 (2020)], we showed by means of extremely large-scale molecular dynamics simulations that this so-called underscreening effect might not be a feature of bulk electrolytes. Herein, we corroborate these findings by providing additional results with more detailed analyses and expand our investigations to ionic liquids under confinement. Unlike in bulk systems, where screening lengths are computed from the decay of interionic potentials of mean force, we extract such data in confined systems from cumulative charge distributions. At high concentrations, our simulations show increasing screening lengths with increasing electrolyte concentration, consistent with classical liquid state theories. However, our analyses demonstrate that—also for confined systems—there is no anomalously large screening length. As expected, the screening lengths determined for ionic liquids under confinement are in good quantitative agreement with the screening lengths of the same ionic systems in bulk. In addition, we show that some theoretical models used in the literature to relate the measured screening lengths to other observables are inapplicable to highly concentrated electrolytes.

1.
R. D.
Rogers
and
K. R.
Seddon
,
Science
302
,
792
(
2003
).
2.
S.
Pandey
,
Anal. Chim. Acta
556
,
38
(
2006
).
3.
R.
Hayes
,
G. G.
Warr
, and
R.
Atkin
,
Chem. Rev.
115
,
6357
(
2015
).
4.
Z.
Lei
,
B.
Chen
,
Y.-M.
Koo
, and
D. R.
MacFarlane
,
Chem. Rev.
117
,
6633
(
2017
).
5.
A. E.
Visser
,
R. P.
Swatloski
,
W. M.
Reichert
,
R.
Mayton
,
S.
Sheff
,
A.
Wierzbicki
,
J. H.
Davis
, Jr.
, and
R. D.
Rogers
,
Chem. Commun.
2001
,
135
.
6.
T. L.
Greaves
,
A.
Weerawardena
,
C.
Fong
,
I.
Krodkiewska
, and
C. J.
Drummond
,
J. Phys. Chem. B
110
,
22479
(
2006
).
7.
T. L.
Greaves
,
A.
Weerawardena
,
C.
Fong
,
I.
Krodkiewska
, and
C. J.
Drummond
,
J. Phys. Chem. B
110
,
26506
(
2006
).
8.
V.
Lesch
,
A.
Heuer
,
V. A.
Tatsis
,
C.
Holm
, and
J.
Smiatek
,
Phys. Chem. Chem. Phys.
17
,
26049
(
2015
).
9.
M. A.
Gebbie
,
M.
Valtiner
,
X.
Banquy
,
E. T.
Fox
,
W. A.
Henderson
, and
J. N.
Israelachvili
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
9674
(
2013
).
10.
T.
Baimpos
,
B. R.
Shrestha
,
S.
Raman
, and
M.
Valtiner
,
Langmuir
30
,
4322
(
2014
).
11.
R. M.
Espinosa-Marzal
,
A.
Arcifa
,
A.
Rossi
, and
N. D.
Spencer
,
J. Phys. Chem. Lett.
5
,
179
(
2014
).
12.
H.-W.
Cheng
,
P.
Stock
,
B.
Moeremans
,
T.
Baimpos
,
X.
Banquy
,
F. U.
Renner
, and
M.
Valtiner
,
Adv. Mater. Interfaces
2
,
1500159
(
2015
).
13.
M. A.
Gebbie
,
H. A.
Dobbs
,
M.
Valtiner
, and
J. N.
Israelachvili
,
Proc. Natl. Acad. Sci. U. S. A.
112
,
7432
(
2015
).
14.
A. M.
Smith
,
A. A.
Lee
, and
S.
Perkin
,
J. Phys. Chem. Lett.
7
,
2157
(
2016
).
15.
M. A.
Gebbie
,
A. M.
Smith
,
H. A.
Dobbs
,
A. A.
Lee
,
G. G.
Warr
,
X.
Banquy
,
M.
Valtiner
,
M. W.
Rutland
,
J. N.
Israelachvili
,
S.
Perkin
, and
R.
Atkin
,
Chem. Commun.
53
,
1214
(
2017
).
16.
R. J. F.
Leote de Carvalho
and
R.
Evans
,
Mol. Phys.
83
,
619
(
1994
).
17.
R.
Kjellander
,
Soft Matter
15
,
5866
(
2019
).
18.
A. A.
Lee
,
C. S.
Perez-Martinez
,
A. M.
Smith
, and
S.
Perkin
,
Faraday Discuss.
199
,
239
(
2017
).
19.
P.
Debye
and
E.
Hückel
,
Phys. Z.
24
,
185
(
1923
).
20.
M.
Gouy
,
J. Phys. Theor. Appl.
9
,
457
(
1910
).
21.
D. L.
Chapman
,
Philos. Mag.
25
,
475
(
1913
).
22.
P.
Attard
,
Phys. Rev. E
48
,
3604
(
1993
).
23.
R.
Evans
,
R. J. F.
Leote de Carvalho
,
J. R.
Henderson
, and
D. C.
Hoyle
,
J. Chem. Phys.
100
,
591
(
1994
).
24.
L. M.
Varela
,
M.
García
, and
V.
Mosquera
,
Phys. Rep.
382
,
1
(
2003
).
25.
A. A.
Kornyshev
,
J. Phys. Chem. B
111
,
5545
(
2007
).
26.
M. A.
Brown
,
G. V.
Bossa
, and
S.
May
,
Langmuir
31
,
11477
(
2015
).
27.
Z. A. H.
Goodwin
,
G.
Feng
, and
A. A.
Kornyshev
,
Electrochim. Acta
225
,
190
(
2017
).
28.
F.
Coupette
,
A. A.
Lee
, and
A.
Härtel
,
Phys. Rev. Lett.
121
,
075501
(
2018
).
29.
N.
Gavish
,
D.
Elad
, and
A.
Yochelis
,
J. Phys. Chem. Lett.
9
,
36
(
2018
).
30.
R.
Kjellander
,
J. Chem. Phys.
148
,
193701
(
2018
).
31.
B.
Rotenberg
,
O.
Bernard
, and
J.-P.
Hansen
,
J. Phys.: Condens. Matter
30
,
054005
(
2018
).
32.
R.
Kjellander
,
Phys. Chem. Chem. Phys.
22
,
23952
(
2020
).
33.
P.
Gaddam
and
W.
Ducker
,
Langmuir
35
,
5719
(
2019
).
34.
N.
Hjalmarsson
,
R.
Atkin
, and
M. W.
Rutland
,
Chem. Commun.
53
,
647
(
2017
).
35.
M.
Han
and
R. M.
Espinosa-Marzal
,
J. Phys. Chem. C
122
,
21344
(
2018
).
36.
M.
Han
and
R. M.
Espinosa-Marzal
,
ACS Appl. Mater. Interfaces
11
,
33465
(
2019
).
37.
A. A.
Lee
,
C. S.
Perez-Martinez
,
A. M.
Smith
, and
S.
Perkin
,
Phys. Rev. Lett.
119
,
026002
(
2017
).
38.
R. M.
Adar
,
S. A.
Safran
,
H.
Diamant
, and
D.
Andelman
,
Phys. Rev. E
100
,
042615
(
2019
).
39.
A.
Ciach
and
O.
Patsahan
,
J. Phys.: Condens. Matter
33
,
37LT01
(
2021
).
40.
CRC Handbook of Chemistry and Physics
, 100th ed., edited by
J. R.
Rumble
(
CRC Press; Taylor & Francis
,
Boca Raton, FL
,
2019
).
41.
R.
Kjellander
and
D. J.
Mitchell
,
Chem. Phys. Lett.
200
,
76
(
1992
).
42.
R.
Kjellander
and
D. J.
Mitchell
,
J. Chem. Phys.
101
,
603
(
1994
).
43.
J.
Zeman
,
S.
Kondrat
, and
C.
Holm
,
Chem. Commun.
56
,
15635
(
2020
).
44.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
45.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
,
SoftwareX
1-2
,
19
(
2015
).
46.
S.
Páll
,
M. J.
Abraham
,
C.
Kutzner
,
B.
Hess
, and
E.
Lindahl
, in
Solving Software Challenges for Exascale: International Conference on Exascale Applications and Software, EASC 2014, Stockholm, Sweden, April 2–3, 2014, Revised Selected Papers
, edited by
S.
Markidis
and
E.
Laure
(
Springer International
,
2015
), pp.
3
27
.
47.
S.
Pronk
,
S.
Páll
,
R.
Schulz
,
P.
Larsson
,
P.
Bjelkmar
,
R.
Apostolov
,
M. R.
Shirts
,
J. C.
Smith
,
P. M.
Kasson
,
D.
van der Spoel
,
B.
Hess
, and
E.
Lindahl
,
Bioinformatics
29
,
845
(
2013
).
48.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
49.
D.
van der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
,
J. Comput. Chem.
26
,
1701
(
2005
).
50.
E.
Lindahl
,
B.
Hess
, and
D.
van der Spoel
,
J. Mol. Model.
7
,
306
(
2001
).
51.
H. J. C.
Berendsen
,
D.
van der Spoel
, and
R.
van Drunen
,
Comput. Phys. Commun.
91
,
43
(
1995
).
52.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
53.
C. L.
Wennberg
,
T.
Murtola
,
B.
Hess
, and
E.
Lindahl
,
J. Chem. Theory Comput.
9
,
3527
(
2013
).
54.
I.-C.
Yeh
and
M. L.
Berkowitz
,
J. Chem. Phys.
111
,
3155
(
1999
).
55.
B.
Doherty
,
X.
Zhong
,
S.
Gathiaka
,
B.
Li
, and
O.
Acevedo
,
J. Chem. Theory Comput.
13
,
6131
(
2017
).
56.
D.
Roy
and
M.
Maroncelli
,
J. Phys. Chem. B
114
,
12629
(
2010
).
57.
I.
Leontyev
and
A.
Stuchebrukhov
,
Phys. Chem. Chem. Phys.
13
,
2613
(
2011
).
58.
F.
Dommert
,
K.
Wendler
,
R.
Berger
,
L. D.
Site
, and
C.
Holm
,
ChemPhysChem
13
,
1625
(
2012
).
59.
J.
Rigby
and
E. I.
Izgorodina
,
Phys. Chem. Chem. Phys.
15
,
1632
(
2013
).
60.
I. V.
Leontyev
and
A. A.
Stuchebrukhov
,
J. Chem. Phys.
130
,
085102
(
2009
).
61.
F.
Dommert
,
J.
Schmidt
,
C.
Krekeler
,
Y. Y.
Zhao
,
R.
Berger
,
L.
Delle Site
, and
C.
Holm
,
J. Mol. Liq.
152
,
2
(
2010
).
62.
J.
Schmidt
,
C.
Krekeler
,
F.
Dommert
,
Y.
Zhao
,
R.
Berger
,
L.
Delle Site
, and
C.
Holm
,
J. Phys. Chem. B
114
,
6150
(
2010
).
63.
K.
Wendler
,
S.
Zahn
,
F.
Dommert
,
R.
Berger
,
C.
Holm
,
B.
Kirchner
, and
L. D.
Site
,
J. Chem. Theory Comput.
7
,
3040
(
2011
).
64.
K.
Wendler
,
F.
Dommert
,
Y. Y.
Zhao
,
R.
Berger
,
C.
Holm
, and
L.
Delle Site
,
Faraday Discuss.
154
,
111
(
2012
).
65.
J.
Zeman
,
F.
Uhlig
,
J.
Smiatek
, and
C.
Holm
,
J. Phys.: Condens. Matter
29
,
504004
(
2017
).
66.
F.
Uhlig
,
J.
Zeman
,
J.
Smiatek
, and
C.
Holm
,
J. Chem. Theory Comput.
14
,
1471
(
2018
).
67.
S.
Weerasinghe
and
P. E.
Smith
,
J. Chem. Phys.
119
,
11342
(
2003
).
68.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
69.
M.
Takeuchi
,
Y.
Kameda
,
Y.
Umebayashi
,
S.
Ogawa
,
T.
Sonoda
,
S.-i.
Ishiguro
,
M.
Fujita
, and
M.
Sano
,
J. Mol. Liq.
148
,
99
(
2009
).
70.
N.
Michaud-Agrawal
,
E. J.
Denning
,
T. B.
Woolf
, and
O.
Beckstein
,
J. Comput. Chem.
32
,
2319
(
2011
).
71.
R. J.
Gowers
,
M.
Linke
,
J.
Barnoud
,
T. J. E.
Reddy
,
M. N.
Melo
,
S. L.
Seyler
,
J.
Domański
,
D. L.
Dotson
,
S.
Buchoux
,
I. M.
Kenney
, and
O.
Beckstein
, in
Proceedings of the 15th Python in Science Conference
, edited by
S.
Benthall
and
S.
Rostrup
(
The SciPy Organizers
,
2016
), pp.
98
105
.
72.
L. D.
Dalcín
,
R. R.
Paz
, and
M.
Storti
,
J. Parallel Distrib. Comput.
65
,
1108
(
2005
).
73.
L. D.
Dalcín
,
R. R.
Paz
,
M.
Storti
, and
J.
D’Elía
,
J. Parallel Distrib. Comput.
68
,
655
(
2008
).
74.
L. D.
Dalcín
,
R. R.
Paz
,
P. A.
Kler
, and
A.
Cosimo
,
Adv. Water Resour.
34
,
1124
(
2011
).
75.
M.
Neumann
and
O.
Steinhauser
,
Chem. Phys. Lett.
102
,
508
(
1983
).
76.
M.
Sega
,
S. S.
Kantorovich
,
A.
Arnold
, and
C.
Holm
, in
Recent Advances in Broadband Dielectric Spectroscopy
, NATO Science for Peace and Security Series B: Physics and Biophysics, edited by
Y. P.
Kalmykov
(
Springer Netherlands
,
2013
), pp.
103
122
.
77.
C.
Schröder
,
M.
Haberler
, and
O.
Steinhauser
,
J. Chem. Phys.
128
,
134501
(
2008
).
78.
S.
Gabl
,
C.
Schröder
, and
O.
Steinhauser
,
J. Chem. Phys.
137
,
094501
(
2012
).
79.
J.-F.
Côté
,
D.
Brouillette
,
J. E.
Desnoyers
,
J.-F.
Rouleau
,
J.-M.
St-Arnaud
, and
G.
Perron
,
J. Solution Chem.
25
,
1163
(
1996
).
80.
C.
Daguenet
,
P. J.
Dyson
,
I.
Krossing
,
A.
Oleinikova
,
J.
Slattery
,
C.
Wakai
, and
H.
Weingärtner
,
J. Phys. Chem. B
110
,
12682
(
2006
).
81.
E.
Krucker-Velasquez
and
J. W.
Swan
,
J. Chem. Phys.
155
,
134903
(
2021
).
82.
V.
Lockett
,
M.
Horne
,
R.
Sedev
,
T.
Rodopoulos
, and
J.
Ralston
,
Phys. Chem. Chem. Phys.
12
,
12499
(
2010
).
83.
D. J.
Bozym
,
B.
Uralcan
,
D. T.
Limmer
,
M. A.
Pope
,
N. J.
Szamreta
,
P. G.
Debenedetti
, and
I. A.
Aksay
,
J. Phys. Chem. Lett.
6
,
2644
(
2015
).
84.
W. J.
Hamer
and
Y.-C.
Wu
,
J. Phys. Chem. Ref. Data
1
,
1047
(
1972
).
85.
S. W.
Coles
,
C.
Park
,
R.
Nikam
,
M.
Kanduč
,
J.
Dzubiella
, and
B.
Rotenberg
,
J. Phys. Chem. B
124
,
1778
(
2020
).
86.
P.
Cats
,
R.
Evans
,
A.
Härtel
, and
R.
van Roij
,
J. Chem. Phys.
154
,
124504
(
2021
).
87.
N.
Anousheh
,
F. J.
Solis
, and
V.
Jadhao
,
AIP Adv.
10
,
125312
(
2020
).
88.
R.
Kjellander
,
Phys. Chem. Chem. Phys.
18
,
18985
(
2016
).
89.
J.
Ulander
and
R.
Kjellander
,
J. Chem. Phys.
114
,
4893
(
2001
).
90.
R.
Lhermerout
and
S.
Perkin
,
Phys. Rev. Fluids
3
,
014201
(
2018
).

Supplementary Material

You do not currently have access to this content.