Motivated by the recent theoretical discovery [S.-M. Mullins et al., Nat. Commun. 9, 3352 (2018)] of a surprisingly contracted 60-atom hollow shell of chiral-icosahedral symmetry (I-Au60) of remarkable rigidity and electronegativity, we have explored, via first-principles density functional theory calculations, its physico-chemical interactions with internal and external shells, enabling conclusions regarding its robustness and identifying composite forms in which an identifiable I-Au60 structure may be realized as a product of natural or laboratory processes. The dimensions and rigidity of I-Au60 suggest a templating approach; e.g., an Ih-C60 fullerene fits nicely within its interior, as a nested cage. In this work, we have focused on its susceptibility, i.e., the extent to which the unique structural and electronic properties of I-Au60 are modified by incorporation into selected multi-shell structures. Our results confirm that the I-Au60 shell is robustly maintained and protected in various bilayer structures: Ih-C60@I-Au60, Ih-Au32@I-Au602+, Au60(MgCp)12, and their silver analogs. A detailed analysis of the structural and electronic properties of the selected I-Au60 shell-based nanostructures is presented. We found that the I-Au60 shell structure is quite well retained in several robust forms. In all cases, the I-symmetry is preserved, and the I-Au60 shell is slightly deformed only in the case of the Ih-C60@I-Au60 system. This analysis serves to stimulate and provide guidance toward the identification and isolation of various I-Au60 shell-based nanostructures, with much potential for future applications. We conclude with a critical comparative discussion of these systems and of the implications for continuing theoretical and experimental investigations.

1.
L.
Trombach
,
S.
Rampino
,
L.-S.
Wang
, and
P.
Schwerdtfeger
, “
Hollow gold cages and their topological relationship to dual fullerenes
,”
Chem. - Eur. J.
22
,
8823
8834
(
2016
).
2.
S.
Yamazoe
,
K.
Koyasu
, and
T.
Tsukuda
, “
Nonscalable oxidation catalysis of gold clusters
,”
Acc. Chem. Res.
47
,
816
824
(
2014
).
3.
S.-M.
Mullins
,
H.-C.
Weissker
,
R.
Sinha-Roy
,
J. J.
Pelayo
,
I. L.
Garzón
,
R. L.
Whetten
, and
X.
López-Lozano
, “
Chiral symmetry breaking yields the I–Au60 perfect golden shell of singular rigidity
,”
Nat. Commun.
9
,
3352
(
2018
).
4.
H.
Ning
,
J.
Wang
,
Q.-M.
Ma
,
H.-Y.
Han
, and
Y.
Liu
, “
A series of quasi-icosahedral gold fullerene cages: Structures and stability
,”
J. Phys. Chem. Solids
75
,
696
699
(
2014
).
5.
A. J.
Karttunen
,
M.
Linnolahti
,
T. A.
Pakkanen
, and
P.
Pyykkö
, “
Icosahedral Au72: A predicted chiral and spherically aromatic golden fullerene
,”
Chem. Commun.
4
,
465
467
(
2008
).
6.
M. P.
Johansson
,
D.
Sundholm
, and
J.
Vaara
, “
Au32: A 24-carat golden fullerene
,”
Angew. Chem., Int. Ed.
43
,
2678
2681
(
2004
).
7.
S. N.
Khanna
and
P.
Jena
, “
Assembling crystals from clusters
,”
Phys. Rev. Lett.
69
,
1664
1667
(
1992
).
8.

The term (or concept of) “Spherical (3D) Aromaticity” has been introduced by Hirsch22 and Karttunen et al.5 to describe certain [magnetic shielding] consequences of such electron shells.

9.

The L = 5 (“H”) shell will assume particular significance in the discussion to follow, as it relates to the forms I–Au72 as well as I–Au60 [12] stability/electronic gap.

10.
H.-C.
Weissker
,
H. B.
Escobar
,
V. D.
Thanthirige
,
K.
Kwak
,
D.
Lee
,
G.
Ramakrishna
,
R. L.
Whetten
, and
X.
López-Lozano
, “
Information on quantum states pervades the visible spectrum of the ubiquitous Au144(SR)60 gold nanocluster
,”
Nat. Commun.
5
,
3785
(
2014
).
11.
A.
Tlahuice-Flores
,
D. M.
Black
,
S. B. H.
Bach
,
M.
Jose-Yacamán
, and
R. L.
Whetten
, “
Structure and bonding of the gold-subhalide cluster I-Au144Cl60[z]
,”
Phys. Chem. Chem. Phys.
15
,
19191
19195
(
2013
).
12.
D.
Bahena
,
N.
Bhattarai
,
U.
Santiago
,
A.
Tlahuice
,
A.
Ponce
,
S. B. H.
Bach
,
B.
Yoon
,
R. L.
Whetten
,
U.
Landman
, and
M.
Jose-Yacamán
, “
Stem electron diffraction and high-resolution images used in the determination of the crystal structure of the Au144(SR)60 cluster
,”
J. Phys. Chem. Lett.
4
,
975
981
(
2013
).
13.
O.
López-Acevedo
,
J.
Akola
,
R. L.
Whetten
,
H.
Grönbeck
, and
H.
Häkkinen
, “
Structure and bonding in the ubiquitous icosahedral metallic gold cluster Au144(SR)60
,”
J. Phys. Chem. C
113
,
5035
5038
(
2009
).
14.
N.
Yan
,
N.
Xia
,
L.
Liao
,
M.
Zhu
,
F.
Jin
,
R.
Jin
, and
Z.
Wu
, “
Unraveling the long-pursued Au144 structure by x-ray crystallography
,”
Sci. Adv.
4
,
eaat7259
(
2018
).
15.
Z.
Lei
,
J.-J.
Li
,
X.-K.
Wan
,
W.-H.
Zhang
, and
Q.-M.
Wang
, “
Isolation and total structure determination of an all-alkynyl-protected gold nanocluster Au144
,”
Angew. Chem., Int. Ed.
57
,
8639
8643
(
2018
).
16.
R. L.
Whetten
,
H.-C.
Weissker
,
J. J.
Pelayo
,
S. M.
Mullins
,
X.
López-Lozano
, and
I. L.
Garzón
, “
Chiral-icosahedral (I) symmetry in ubiquitous metallic cluster compounds (145A,60X): Structure and bonding principles
,”
Acc. Chem. Res.
52
,
34
43
(
2019
).
17.
R. L.
Whetten
,
J. T.
Khoury
,
M. M.
Alvarez
,
S.
Murthy
,
I.
Vezmar
,
Z. L.
Wang
,
P. W.
Stephens
,
C. L.
Cleveland
,
W. D.
Luedtke
, and
U.
Landman
, “
Nanocrystal gold molecules
,”
Adv. Mater.
8
,
428
433
(
1996
).
18.
N. T.
Tran
,
D. R.
Powell
, and
L. F.
Dahl
, “
Nanosized Pd145 (CO)x (PEt3)30 containing a capped three-shell 145-atom metal-core geometry of pseudo icosahedral symmetry
,”
Angew. Chem., Int. Ed.
39
,
4121
4125
(
2000
).
19.
N. K.
Chaki
,
Y.
Negishi
,
H.
Tsunoyama
,
Y.
Shichibu
, and
T.
Tsukuda
, “
Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: Mass-spectrometric determination of molecular formulas and structural implications
,”
J. Am. Chem. Soc.
130
,
8608
8610
(
2008
).
20.
M.
Walter
,
J.
Akola
,
O.
López-Acevedo
,
P. D.
Jadzinsky
,
G.
Calero
,
C. J.
Ackerson
,
R. L.
Whetten
,
H.
Grönbeck
, and
H.
Häkkinen
, “
A unified view of ligand-protected gold clusters as superatom complexes
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
9157
9162
(
2008
).
21.
W.
Huang
,
M.
Ji
,
C.-D.
Dong
,
X.
Gu
,
L.-M.
Wang
,
X. G.
Gong
, and
L.-S.
Wang
, “
Relativistic effects and the unique low-symmetry structures of gold nanoclusters
,”
ACS Nano
2
,
897
904
(
2008
).
22.
A.
Hirsch
,
Z.
Chen
, and
H.
Jiao
, “
Spherical aromaticity in Ih symmetrical fullerenes: The 2(N + 1)2 rule
,”
Angew. Chem., Int. Ed.
39
,
3915
3917
(
2000
).
23.
J.
Wang
,
J.
Jellinek
,
J.
Zhao
,
Z.
Chen
,
R. B.
King
, and
P.
von Ragué Schleyer
, “
Hollow cages versus space-filling structures for medium-sized gold clusters: The spherical aromaticity of the Au50 cage
,”
J. Phys. Chem. A
109
,
9265
9269
(
2005
).
24.
H. W.
Kroto
,
J. R.
Heath
,
S. C.
O’Brien
,
R. F.
Curl
, and
R. E.
Smalley
, “
C60: Buckminsterfullerene
,”
Nature
318
,
162
163
(
1985
).
25.
J. M.
Soler
,
M. R.
Beltrán
,
K.
Michaelian
,
I. L.
Garzón
,
P.
Ordejón
,
D.
Sánchez-Portal
, and
E.
Artacho
, “
Metallic bonding and cluster structure
,”
Phys. Rev. B
61
,
5771
5780
(
2000
).
26.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
, “
The siesta method for ab initio order-N materials simulation
,”
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
27.
N.
Troullier
and
J. L.
Martins
, “
Efficient pseudopotentials for plane-wave calculations
,”
Phys. Rev. B
43
,
1993
2006
(
1991
).
28.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
29.
P. A.
Clayborne
,
O.
López-Acevedo
,
R. L.
Whetten
,
H.
Grönbeck
, and
H.
Häkkinen
, “
The Al50cp12* cluster—A 138-electron closed shell (L = 6) superatom
,”
Eur. J. Inorg. Chem.
2011
,
2649
2652
.
30.
See http://www.jmol.org for Jmol: An open-source java viewer for chemical structures in 3D.
31.
R. J. C.
Batista
,
M. S. C.
Mazzoni
,
L. O.
Ladeira
, and
H.
Chacham
, “
First-principles investigation of Au-covered carbon fullerenes
,”
Phys. Rev. B
72
,
085447
(
2005
).
32.
T. P.
Martin
, “
Shells of atoms
,”
Phys. Rep.
273
,
199
241
(
1996
).
33.
J.
Li
,
X.
Li
,
H.-J.
Zhai
, and
L.-S.
Wang
, “
Au20: A tetrahedral cluster
,”
Science
299
,
864
867
(
2003
).
34.
I.
Chakraborty
,
A.
Govindarajan
,
J.
Erusappan
,
A.
Ghosh
,
T.
Pradeep
,
B.
Yoon
,
R. L.
Whetten
, and
U.
Landman
, “
The superstable 25 kDa monolayer protected silver nanoparticle: Measurements and interpretation as an icosahedral Ag152(SCH2CH2Ph)60 cluster
,”
Nano Lett.
12
,
5861
5866
(
2012
).
35.
K.
Heinze
and
H.
Lang
, “
Ferrocene—Beauty and function
,”
Organometallics
32
,
5623
5625
(
2013
).
36.
J. J.
Pelayo
,
R. L.
Whetten
, and
I. L.
Garzón
, “
Geometric quantification of chirality in ligand-protected metal clusters
,”
J. Phys. Chem. C
119
,
28666
28678
(
2015
).
37.
D.
Bochicchio
and
R.
Ferrando
, “
Size-dependent transition to high-symmetry chiral structures in AgCu, AgCo, AgNi, and AuNi nanoalloys
,”
Nano Lett.
10
,
4211
4216
(
2010
).
38.
V. Z.
Kresin
and
Y. N.
Ovchinnikov
, “
Giant strengthening of superconducting pairing in metallic nanoclusters: Large enhancement of Tc and potential for room-temperature superconductivity
,”
Phys.-Usp.
51
,
427
435
(
2008
).
You do not currently have access to this content.