The photodissociation dynamics of jet-cooled trifluoroacetaldehyde (CF3CHO) into radical products, CF3 + HCO, was explored using velocity mapped ion imaging over the wavelength range 297.5 nm λ 342.8 nm (33 613–29 172 cm−1) covering the entire section of the absorption spectrum accessible with solar actinic wavelengths at the ground level. After initial excitation to the first excited singlet state, S1, the radical dissociation proceeds largely via the first excited triplet state, T1, at excitation energies above the T1 barrier. By combining velocity-mapped ion imaging with high-level theory, we place this barrier at 368.3 ± 2.4 kJ mol−1 (30 780 ± 200 cm−1). After exciting to S1 at energies below this barrier, the dissociation proceeds exclusively via the ground electronic state, S0. The dissociation threshold is determined to be 335.7 ± 1.8 kJ mol−1 (28 060 ± 150 cm−1). Using laser-induced fluorescence spectroscopy, the origin of the S1S0 transition is assigned at 28 903 cm−1. The S0 dissociation channel is active at the S1 origin, but the yield significantly increases above 29 100 cm−1 due to enhanced intersystem crossing or internal conversion.

1.
Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer,
United Nations Environment Programme
,
Kigali
,
15 October 2016
.
2.
Montreal Protocol on Substances that Deplete the Ozone Layer,
United Nations Environment Programme
,
Montreal
,
15 September 1987
.
3.
C. B.
Rivela
,
C. M.
Tovar
,
M. A.
Teruel
,
I.
Barnes
,
P.
Wiesen
, and
M. B.
Blanco
, “
CFCs replacements: Reactivity and atmospheric lifetimes of a series of hydrofluoroolefins towards OH radicals and Cl atoms
,”
Chem. Phys. Lett.
714
,
190
196
(
2019
).
4.
J. B.
Burkhokder
,
R. A.
Cox
, and
A. R.
Ravishankara
, “
Atmospheric degradation of ozone depleting substances, their substitutes, and related species
,”
Chem. Rev.
115
,
3704
3759
(
2015
).
5.
M. S.
Javadi
,
R.
Søndergaard
,
O. J.
Nielsen
,
M. D.
Hurley
, and
T. J.
Wallington
, “
Atmospheric chemistry of trans-CF3CH=CHF: Products and mechanisms of hydroxyl radical and chlorine atom initiated oxidation
,”
Atmos. Chem. Phys.
8
,
3141
3147
(
2008
).
6.
S. R.
Sellevåg
,
T.
Kelly
,
H.
Sidebottom
, and
C. J.
Nielsen
, “
A study of the IR and UV-Vis absorption cross-sections, photolysis and OH-initiated oxidation of CF3CHO and CF3CH2CHO
,”
Phys. Chem. Chem. Phys.
6
,
1243
1252
(
2004
).
7.
B.
Chan
,
J.
Deng
, and
L.
Radom
, “
G4(MP2)-6X: A cost-effective improvement to G4(MP2)
,”
J. Chem. Theory Comput.
7
,
112
120
(
2011
).
8.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
O.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, Gaussian 09, Revision D.01,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
9.
M. V. R.
Reddy
,
M. T.
Rudd
, and
P. V.
Ramachandran
, “
Study of fluorocarbonyls for the Baylis-Hillman reaction
,”
J. Org. Chem.
67
,
5382
5385
(
2002
).
10.
N.
Hobday
,
M. S.
Quinn
,
K.
Nauta
,
D. U.
Andrews
,
M. J. T.
Jordan
, and
S. H.
Kable
, “
Experimental and theoretical investigation of triple fragmentation in the photodissociation dynamics of H2CO
,”
J. Phys. Chem.
117
,
12091
12103
(
2013
).
11.
R. A.
Ingle
,
C. S.
Hansen
,
E.
Elsdon
,
M.
Bain
,
S. J.
King
,
J. W. L.
Lee
,
M.
Brouard
,
C.
Vallance
,
R.
Turchetta
, and
M. N. R.
Ashfold
, “
Ultraviolet photochemistry of 2-bromothiophene explored using universal ionization detection and multi-mass velocity-map imaging with a PImMS2 sensor
,”
J. Chem. Phys.
147
,
013914
(
2017
).
12.
S. G.
Lias
, “
Ionization energy evaluation
,” NIST chemistry webbook, NIST standard reference database number 69,
National Insitute of Standards and Technology
,
Gaithersburg, MD
, retrieved
July 26, 2021
.
13.
D. H.
Parker
and
A. T. J. B.
Eppink
, “
Photoelectron and photofragment velocity map imaging of state-selected molecular oxygen dissociation/ionization dynamics
,”
J. Chem. Phys.
107
,
2357
2362
(
1997
).
14.
G. A.
Garcia
, “
Two-dimensional charged particle image inversion using a polar basis function expansion
,”
Rev. Sci. Instrum.
75
,
4989
(
2004
).
15.
M. S.
Chiappero
,
F. E.
Malanca
,
G. A.
Argüello
,
S. T.
Wooldridge
,
M. D.
Hurley
,
J. C.
Ball
,
T. J.
Wallington
,
R. L.
Waterland
, and
R. C.
Buck
, “
Atmospheric chemistry of perfluoroaldehydes (CxF2x+1CHO) and fluorotelomer aldehydes (CxF2x+1CH2CHO): Quantification of the important role of photolysis
,”
J. Phys. Chem.
110
,
11944
11953
(
2006
).
16.
R. E.
Dodd
and
J. W.
Smith
, “
The photolysis of trifluoroacetaldehyde
,”
J. Chem. Soc.
1957
,
1465
1473
.
17.
H. Y.
Wang
,
J. A.
Eyre
, and
L. M.
Dorfman
, “
Activation energy for the gas phase reaction of hydrogen atoms with carbon monoxide
,”
J. Chem. Phys.
59
,
5199
5200
(
1973
).
18.
B. R.
Heazlewood
,
S. J.
Rowling
,
A. T.
Maccarone
,
M. J. T.
Jordan
, and
S. H.
Kable
, “
Photochemical formation of HCO and CH3 on the ground S0(A1) state of CH3CHO
,”
J. Chem. Phys.
130
,
054310
(
2009
).
19.
H.
Keller-Rudek
,
G. K.
Moortgat
,
R.
Sander
, and
R.
Sörensen
, “
The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest
,”
Earth Syst. Sci. Data
5
,
365
373
(
2013
).
20.
M.
Noble
,
E. C.
Apel
, and
E. K. C.
Lee
, “
The singlet π* ← n spectrum of jet-cooled acetaldehyde
,”
J. Chem. Phys.
78
,
2219
2226
(
1983
).
21.
M.
Noble
and
E. K. C.
Lee
, “
The jet-cooled electronic spectrum of acetaldehyde and deuterated derivatives at rotational resolution
,”
J. Chem. Phys.
81
,
1632
1642
(
1984
).
22.
M.
Baba
,
I.
Hanazaki
, and
U.
Nagashima
, “
The S1(n, π*) states of acetaldehyde and acetone in supersonic beam: Methyl internal rotation and C=O out-of-plane wagging
,”
J. Chem. Phys.
82
,
3938
3947
(
1985
).
23.
H.
Liu
,
E. C.
Lim
,
C.
Muñoz-Caro
,
A.
Niño
,
R. H.
Judge
, and
D. C.
Moule
, “
The torsion-inversion energy levels in the S1(n, π*) electronic state of acetaldehyde from high-resolution jet-cooled fluorescence excitation spectroscopy
,”
J. Mol. Spectrosc.
175
,
172
189
(
1996
).
24.
I. A.
Godunov
,
N. N.
Yakovlev
, and
E. B.
Averina
, “
S1 ← S0 vibronic spectrum and structure of fluoral in the S1 state
,”
Russ. Chem. Bull.
47
,
287
292
(
1998
).
25.
V. A.
Bataev
,
A. V.
Abramenkov
, and
I. A.
Godunov
, “
One- and two-dimensional torsion-inversion models for the fluoral molecule (CF3CHO) in excited electronic states
,”
Struct. Chem.
15
,
31
39
(
2004
).
26.
D. A.
Hansen
and
E. K. C.
Lee
, “
Radiative and nonradiative-transitions in first excited singlet-state of simple linear aldehydes
,”
J. Chem. Phys.
63
,
3272
3277
(
1975
).
27.
D. A.
Hansen
and
E. K. C.
Lee
, “
Radiative and nonradiative-transitions in excited singlet-state of symmetrical methyl-substituted acetones
,”
J. Chem. Phys.
62
,
183
189
(
1975
).
28.
M.
Hunter
,
S. A.
Reid
,
D. C.
Robie
, and
H.
Reisler
, “
The monoenergetic unimolecular reaction of expansion-cooled NO2: NO product state distributions at excess energies 0–3000 cm−1
,”
J. Chem. Phys.
99
,
1093
1108
(
1993
).
29.
K. L. K.
Lee
,
K.
Nauta
, and
S. H.
Kable
, “
Photodissociation of acetone from 266 to 312 nm: Dynamics of CH3 + CH3CO channels on the S0 and T1 states
,”
J. Chem. Phys.
146
,
044304
(
2017
).
30.
T.
Shimanouchi
, “
Molecular vibrational frequencies
,” NIST chemistry webbook, NIST standard reference database number 69,
National Insitute of Standards and Technology
,
Gaithersburg, MD
, retrieved
July 26, 2021
.
31.
A. D.
Sappey
and
D. R.
Crosley
, “
Laser-induced fluorescence in the B̃X̃ system of the HCO radical
,”
J. Chem. Phys.
93
,
7601
7608
(
1990
).
32.
G. A.
Carlson
and
G. C.
Pimentel
, “
Infrared detection of gaseous trifluoromethyl radical
,”
J. Chem. Phys.
44
,
4053
4054
(
1966
).
33.
D.
Forney
,
M. E.
Jacox
, and
K. K.
Irikura
, “
Matrix isolation study of the interaction of excited neon atoms with CF4. Infrared spectra of CF3+ and CF3
,”
J. Chem. Phys.
101
,
8290
8296
(
1994
).
34.
T. J.
Sears
, “
The calculation of the energy levels of an asymmetric top free radical in a magnetic field
,”
Comput. Phys. Rep.
2
,
1
32
(
1984
).
35.
C.
Yamada
and
E.
Hirota
, “
Infrared diode laser spectroscopy of the CF3ν3 band
,”
J. Chem. Phys.
78
,
1703
1711
(
1982
).
36.
G. A.
Amaral
,
A.
Arregui
,
L.
Rubio-Lago
,
J. D.
Rodríguez
, and
L.
Bañares
, “
Imaging the radical channel in acetaldehyde photodissociation: Competing mechanisms at energies close to the triplet exit barrier
,”
J. Chem. Phys.
133
,
064303
(
2010
).
37.
B. W.
Toulson
,
K. M.
Kapnas
,
D. A.
Fishman
, and
C.
Murray
, “
Competing pathways in the near-UV photochemistry of acetaldehyde
,”
Phys. Chem. Chem. Phys.
19
,
14276
14288
(
2017
).
38.
S. W.
North
,
D. A.
Blank
,
J. D.
Gezelter
,
C. A.
Longfellow
, and
Y. T.
Lee
, “
Evidence for stepwise dissociation dynamics in acetone at 248 and 193 nm
,”
J. Chem. Phys.
102
,
4447
4460
(
1995
).
39.
K. C.
Thompson
,
D. L.
Crittenden
,
S. H.
Kable
, and
M. J. T.
Jordan
, “
A classical trajectory study of the photodissociation of T1 acetaldehyde: The transition from impulsive to statistical dynamics
,”
J. Chem. Phys.
124
,
044302
(
2006
).
40.
B.
Ruscic
and
D. H.
Bross
, Active Thermochemical Tables (ATcT) values based on ver. 1.122p of the Thermochemical Network,
2020
.
41.
A. W.
Harrison
,
A.
Kharazmi
,
M. F.
Shaw
,
M. S.
Quinn
,
K. L.
Kelvin Lee
,
K.
Nauta
,
K. N.
Rowell
,
M. J. T.
Jordan
, and
S. H.
Kable
, “
Dynamics and quantum yields of H2 + CH2CO as a primary photolysis channel in CH3CHO
,”
Phys. Chem. Chem. Phys.
21
,
14284
14295
(
2019
).

Supplementary Material

You do not currently have access to this content.