We introduce a tempering approach with stochastic density functional theory (sDFT), labeled t-sDFT, which reduces the statistical errors in the estimates of observable expectation values. This is achieved by rewriting the electronic density as a sum of a “warm” component complemented by “colder” correction(s). Since the warm component is larger in magnitude but faster to evaluate, we use many more stochastic orbitals for its evaluation than for the smaller-sized colder correction(s). This results in a significant reduction in the statistical fluctuations and systematic deviation compared to sDFT for the same computational effort. We demonstrate the method’s performance on large hydrogen-passivated silicon nanocrystals, finding a reduction in the systematic deviation in the energy by more than an order of magnitude, while the systematic deviation in the forces is also quenched. Similarly, the statistical fluctuations are reduced by factors of ≈4–5 for the total energy and ≈1.5–2 for the forces on the atoms. Since the embedding in t-sDFT is fully stochastic, it is possible to combine t-sDFT with other variants of sDFT such as energy-window sDFT and embedded-fragmented sDFT.

1.
R. O.
Jones
, “
Density functional theory: Its origins, rise to prominence, and future
,”
Rev. Mod. Phys.
87
(
3
),
897
923
(
2015
).
2.
B.
Kolb
and
T.
Thonhauser
, “
Molecular biology at the quantum level: Can modern density functional theory forge the path?
,”
Nano LIFE
2
(
02
),
1230006
(
2012
).
3.
D.
Selli
,
G.
Fazio
, and
C.
Di Valentin
, “
Modelling realistic TiO2 nanospheres: A benchmark study of SCC-DFTB against hybrid DFT
,”
J. Chem. Phys.
147
(
16
),
164701
(
2017
).
4.
C.
Freysoldt
,
B.
Grabowski
,
T.
Hickel
,
J.
Neugebauer
,
G.
Kresse
,
A.
Janotti
, and
C. G.
Van de Walle
, “
First-principles calculations for point defects in solids
,”
Rev. Mod. Phys.
86
(
1
),
253
305
(
2014
).
5.
R.
Baer
and
M.
Head-Gordon
, “
Sparsity of the density matrix in Kohn-Sham density functional theory and an assessment of linear system-size scaling methods
,”
Phys. Rev. Lett.
79
(
20
),
3962
3965
(
1997
).
6.
G. E.
Scuseria
, “
Linear scaling density functional calculations with Gaussian orbitals
,”
J. Phys. Chem. A
103
(
25
),
4782
4790
(
1999
).
7.
T.
Ozaki
, “
Efficient low-order scaling method for large-scale electronic structure calculations with localized basis functions
,”
Phys. Rev. B
82
(
7
),
075131
(
2010
).
8.
C.
Romero-Muñiz
,
A.
Nakata
,
P.
Pou
,
D. R.
Bowler
,
T.
Miyazaki
, and
R.
Pérez
, “
High-accuracy large-scale DFT calculations using localized orbitals in complex electronic systems: The case of graphene–metal interfaces
,”
J. Phys.: Condens. Matter
30
(
50
),
505901
(
2018
).
9.
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
, “
Self-averaging stochastic Kohn-Sham density-functional theory
,”
Phys. Rev. Lett.
111
(
10
),
106402
(
2013
).
10.
D.
Neuhauser
,
R.
Baer
, and
E.
Rabani
, “
Communication: Embedded fragment stochastic density functional theory
,”
J. Chem. Phys.
141
(
4
),
041102
(
2014
).
11.
M.
Chen
,
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
, “
Overlapped embedded fragment stochastic density functional theory for covalently-bonded materials
,”
J. Chem. Phys.
150
(
3
),
034106
(
2019
).
12.
M. D.
Fabian
,
B.
Shpiro
,
E.
Rabani
,
D.
Neuhauser
, and
R.
Baer
, “
Stochastic density functional theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
9
(
6
),
e1412
(
2019
).
13.
M.
Chen
,
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
, “
Energy window stochastic density functional theory
,”
J. Chem. Phys.
151
(
11
),
114116
(
2019
).
14.
M.
Chen
,
R.
Baer
,
D.
Neuhauser
, and
E.
Rabani
, “
Stochastic density functional theory: Real- and energy-space fragmentation for noise reduction
,”
J. Chem. Phys.
154
(
20
),
204108
(
2021
).
15.
R.
Baer
and
M.
Head-Gordon
, “
Energy renormalization-group method for electronic structure of large systems
,”
Phys. Rev. B
58
(
23
),
15296
15299
(
1998
).
16.
M. F.
Hutchinson
, “
A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines
,”
Commun. Stat. - Simul. Comput.
19
(
2
),
433
450
(
1990
).
17.
R.
Kosloff
, “
Time-dependent quantum-mechanical methods for molecular dynamics
,”
J. Phys. Chem.
92
(
8
),
2087
2100
(
1988
).
18.
O. F.
Sankey
,
D. A.
Drabold
, and
A.
Gibson
, “
Projected random vectors and the recursion method in the electronic-structure problem
,”
Phys. Rev. B
50
(
3
),
1376
(
1994
).
19.
J. P.
Perdew
and
Y.
Wang
, “
Accurate and simple analytic representation of the electron-gas correlation-energy
,”
Phys. Rev. B
45
(
23
),
13244
13249
(
1992
).
20.
N.
Troullier
and
J. L.
Martins
, “
Efficient pseudopotentials for plane-wave calculations
,”
Phys. Rev. B
43
(
3
),
1993
2006
(
1991
).
21.
L.
Kleinman
and
D. M.
Bylander
, “
Efficacious form for model pseudopotentials
,”
Phys. Rev. Lett.
48
(
20
),
1425
1428
(
1982
).
22.
G. J.
Martyna
and
M. E.
Tuckerman
, “
A reciprocal space based method for treating long range interactions in ab initio and force-field-based calculations in clusters
,”
J. Chem. Phys.
110
(
6
),
2810
2821
(
1999
).
23.
D.
Neuhauser
,
R.
Baer
, and
D.
Zgid
, “
Stochastic self-consistent second-order Green’s function method for correlation energies of large electronic systems
,”
J. Chem. Theory Comput.
13
,
5396
5403
(
2017
).
24.
J.
Shao
and
C. F. J.
Wu
, “
A general theory for jackknife variance estimation
,”
Ann. Stat.
17
(
3
),
1176
1197
(
1989
).
25.
E.
Arnon
,
E.
Rabani
,
D.
Neuhauser
, and
R.
Baer
, “
Equilibrium configurations of large nanostructures using the embedded saturated-fragments stochastic density functional theory
,”
J. Chem. Phys.
146
(
22
),
224111
(
2017
).
26.
E.
Arnon
,
E.
Rabani
,
D.
Neuhauser
, and
R.
Baer
, “
Efficient Langevin dynamics for ‘noisy’ forces
,”
J. Chem. Phys.
152
(
16
),
161103
(
2020
).

Supplementary Material

You do not currently have access to this content.