We present OrbNet Denali, a machine learning model for an electronic structure that is designed as a drop-in replacement for ground-state density functional theory (DFT) energy calculations. The model is a message-passing graph neural network that uses symmetry-adapted atomic orbital features from a low-cost quantum calculation to predict the energy of a molecule. OrbNet Denali is trained on a vast dataset of 2.3 × 106 DFT calculations on molecules and geometries. This dataset covers the most common elements in biochemistry and organic chemistry (H, Li, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, Br, and I) and charged molecules. OrbNet Denali is demonstrated on several well-established benchmark datasets, and we find that it provides accuracy that is on par with modern DFT methods while offering a speedup of up to three orders of magnitude. For the GMTKN55 benchmark set, OrbNet Denali achieves WTMAD-1 and WTMAD-2 scores of 7.19 and 9.84, on par with modern DFT functionals. For several GMTKN55 subsets, which contain chemical problems that are not present in the training set, OrbNet Denali produces a mean absolute error comparable to those of DFT methods. For the Hutchison conformer benchmark set, OrbNet Denali has a median correlation coefficient of R2 = 0.90 compared to the reference DLPNO-CCSD(T) calculation and R2 = 0.97 compared to the method used to generate the training data (ωB97X-D3/def2-TZVP), exceeding the performance of any other method with a similar cost. Similarly, the model reaches chemical accuracy for non-covalent interactions in the S66x10 dataset. For torsional profiles, OrbNet Denali reproduces the torsion profiles of ωB97X-D3/def2-TZVP with an average mean absolute error of 0.12 kcal/mol for the potential energy surfaces of the diverse fragments in the TorsionNet500 dataset.

1.
S.
Lorenz
,
A.
Gross
, and
M.
Scheffler
,
Chem. Phys. Lett.
395
,
210
(
2004
).
2.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
3.
J.
Behler
,
J. Comput. Phys.
145
,
170901
(
2016
).
4.
A. P.
Bartók
and
G.
Csányi
,
Int. J. Quantum Chem.
115
,
1051
(
2015
).
5.
T. D.
Huan
,
R.
Batra
,
J.
Chapman
,
S.
Krishnan
,
L.
Chen
, and
R.
Ramprasad
,
npj Comput. Mater.
3
,
37
(
2017
).
6.
Z.
Li
,
J. R.
Kermode
, and
A.
De Vita
,
Phys. Rev. Lett.
114
,
096405
(
2015
).
7.
A. P.
Thompson
,
L. P.
Swiler
,
C. R.
Trott
,
S. M.
Foiles
, and
G. J.
Tucker
,
J. Comput. Phys.
285
,
316
(
2015
).
8.
A.
Glielmo
,
P.
Sollich
, and
A.
De Vita
,
Phys. Rev. B
95
,
214302
(
2017
).
9.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
,
Sci. Data
4
,
170193
(
2017
).
10.
C.
Devereux
,
J. S.
Smith
,
K. K.
Huddleston
,
K.
Barros
,
R.
Zubatyuk
,
O.
Isayev
, and
A. E.
Roitberg
,
J. Chem. Theory Comput.
16
,
4192
(
2020
).
11.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K. T.
Schütt
, and
K.-R.
Müller
,
Sci. Adv.
3
,
e1603015
(
2017
).
12.
S.
Chmiela
,
H. E.
Sauceda
,
K.-R.
Müller
, and
A.
Tkatchenko
,
Nat. Commun.
9
,
3887
(
2018
).
13.
R. T.
McGibbon
,
A. G.
Taube
,
A. G.
Donchev
,
K.
Siva
,
F.
Hernández
,
C.
Hargus
,
K.-H.
Law
,
J. L.
Klepeis
, and
D. E.
Shaw
,
J. Chem. Phys.
147
,
161725
(
2017
).
14.
A.
Grisafi
,
A.
Fabrizio
,
B.
Meyer
,
D. M.
Wilkins
,
C.
Corminboeuf
, and
M.
Ceriotti
,
ACS Cent. Sci.
5
,
57
(
2019
).
15.
A.
Glielmo
,
C.
Zeni
, and
A.
De Vita
,
Phys. Rev. B
97
,
184307
(
2018
).
16.
K. T.
Schütt
,
H. E.
Sauceda
,
P.-J.
Kindermans
,
A.
Tkatchenko
, and
K.-R.
Müller
,
J. Chem. Phys.
148
,
241722
(
2018
).
17.
K. T.
Schütt
,
P.
Kessel
,
M.
Gastegger
,
K. A.
Nicoli
,
A.
Tkatchenko
, and
K.-R.
Müller
,
J. Chem. Theory Comput.
15
,
448
(
2019
).
18.
B.
Anderson
,
T.-S.
Hy
, and
R.
Kondor
, arXiv:1906.04015 (
2019
).
19.
J.
Klicpera
,
J.
Groß
, and
S.
Günnemann
, in
International Conference on Learning Representations
,
2019
.
20.
O. T.
Unke
and
M.
Meuwly
,
J. Chem. Theory Comput.
15
,
3678
(
2019
).
21.
M.
Welborn
,
L.
Cheng
, and
T. F.
Miller
 III
,
J. Chem. Theory Comput.
14
,
4772
(
2018
).
22.
L.
Cheng
,
M.
Welborn
,
A. S.
Christensen
, and
T. F.
Miller
 III
,
J. Chem. Phys.
150
,
131103
(
2019
).
23.
F. A.
Faber
,
A. S.
Christensen
,
B.
Huang
, and
O. A.
von Lilienfeld
,
J. Chem. Phys.
148
,
241717
(
2018
).
24.
A. S.
Christensen
and
O. A.
von Lilienfeld
,
Chimia
73
,
1028
(
2019
).
25.
A. S.
Christensen
,
L. A.
Bratholm
,
F. A.
Faber
, and
O.
Anatole von Lilienfeld
,
J. Chem. Phys.
152
,
044107
(
2020
).
26.
Y.
Chen
,
L.
Zhang
,
H.
Wang
, and
W.
E
, arXiv:2005.00169 (
2020
).
27.
Z.
Qiao
,
M.
Welborn
,
A.
Anandkumar
,
F. R.
Manby
, and
T. F.
Miller
 III
,
J. Chem. Phys.
153
,
124111
(
2020
).
28.
Z.
Qiao
,
F.
Ding
,
M.
Welborn
,
P. J.
Bygrave
,
D. G. A.
Smith
,
A.
Anandkumar
,
F. R.
Manby
, and
T. F.
Miller
 III
, arXiv:2011.02680 (
2020
).
29.
L.
Zhang
,
J.
Han
,
H.
Wang
,
R.
Car
, and
W.
E
,
Phys. Rev. Lett.
120
,
143001
(
2018
).
30.
J.
Gilmer
,
S. S.
Schoenholz
,
P. F.
Riley
,
O.
Vinyals
, and
G. E.
Dahl
, “
Neural message passing for quantum chemistry
,” in
Proceedings of the 34th International Conference on Machine Learning
, arXiv:1704.01212 (
2017
).
31.
S.
Grimme
,
C.
Bannwarth
, and
P.
Shushkov
,
J. Chem. Theory Comput.
13
,
1989
(
2017
).
32.
L.
Goerigk
,
A.
Hansen
,
C.
Bauer
,
S.
Ehrlich
,
A.
Najibi
, and
S.
Grimme
,
Phys. Chem. Chem. Phys.
19
,
32184
(
2017
).
33.
D.
Folmsbee
and
G.
Hutchison
,
Int. J. Quantum Chem.
121
,
e26381
(
2020
).
34.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
2427
(
2011
).
35.
B.
Rai
,
V.
Sresht
,
Q.
Yang
,
R. J.
Unwalla
,
M.
Tu
,
A. M.
Mathiowetz
, and
G. A.
Bakken
, chemRxiv.13483185.v1 (
2020
).
36.
CHEMBL database release 27,
2020
.
37.
M.
Davies
,
M.
Nowotka
,
G.
Papadatos
,
N.
Dedman
,
A.
Gaulton
,
F.
Atkinson
,
L.
Bellis
, and
J. P.
Overington
,
Nucleic Acids Res.
43
,
W612
(
2015
).
38.
D.
Mendez
,
A.
Gaulton
,
A. P.
Bento
,
J.
Chambers
,
M.
De Veij
,
E.
Félix
,
M. P.
Magariños
,
J. F.
Mosquera
,
P.
Mutowo
,
M.
Nowotka
,
M.
Gordillo-Marañón
,
F.
Hunter
,
L.
Junco
,
G.
Mugumbate
,
M.
Rodriguez-Lopez
,
F.
Atkinson
,
N.
Bosc
,
C. J.
Radoux
,
A.
Segura-Cabrera
,
A.
Hersey
, and
A. R.
Leach
,
Nucleic Acids Res.
47
,
D930
(
2018
).
39.
P. J.
Ropp
,
J. C.
Kaminsky
,
S.
Yablonski
, and
J. D.
Durrant
,
J. Cheminf.
11
,
14
(
2019
).
40.
L. C.
Blum
and
J.-L.
Reymond
,
J. Am. Chem. Soc.
131
,
8732
(
2009
).
41.
G.
Montavon
,
M.
Rupp
,
V.
Gobre
,
A.
Vazquez-Mayagoitia
,
K.
Hansen
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
,
New J. Phys.
15
,
095003
(
2013
).
42.
A. P.
Bento
,
A.
Hersey
,
E.
Félix
,
G.
Landrum
,
A.
Gaulton
,
F.
Atkinson
,
L. J.
Bellis
,
M.
De Veij
, and
A. R.
Leach
,
J. Cheminf.
12
,
51
(
2020
).
43.
P.
Jurečka
,
J.
Šponer
,
J.
Černý
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
44.
L. A.
Burns
,
J. C.
Faver
,
Z.
Zheng
,
M. S.
Marshall
,
D. G. A.
Smith
,
K.
Vanommeslaeghe
,
A. D.
MacKerell
,
K. M.
Merz
, and
C. D.
Sherrill
,
J. Chem. Phys.
147
,
161727
(
2017
).
45.
Y.-S.
Lin
,
G.-D.
Li
,
S.-P.
Mao
, and
J.-D.
Chai
,
J. Chem. Theory Comput.
9
,
263
(
2013
).
46.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
47.
F.
Manby
,
T.
Miller
,
P.
Bygrave
,
F.
Ding
,
T.
Dresselhaus
,
F.
Batista-Romero
,
A.
Buccheri
,
C.
Bungey
,
S.
Lee
,
R.
Meli
,
K.
Miyamoto
,
C.
Steinmann
,
T.
Tsuchiya
,
M.
Welborn
,
T.
Wiles
, and
Z.
Williams
, chemRxiv: 7762646.v2 (
2019
).
48.
R.
Polly
,
H.-J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
,
Mol. Phys.
102
,
2311
(
2004
).
49.
F.
Neese
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
73
(
2011
).
50.
J. G.
Brandenburg
,
C.
Bannwarth
,
A.
Hansen
, and
S.
Grimme
,
J. Chem. Phys.
148
,
064104
(
2018
).
51.
C.
Bannwarth
,
S.
Ehlert
, and
S.
Grimme
,
J. Chem. Theory Comput.
15
,
1652
(
2019
).
52.
C.
Bannwarth
,
E.
Caldeweyher
,
S.
Ehlert
,
A.
Hansen
,
P.
Pracht
,
J.
Seibert
,
S.
Spicher
, and
S.
Grimme
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e01493
(
2020
).
53.
J. S.
Smith
,
B. T.
Nebgen
,
R.
Zubatyuk
,
N.
Lubbers
,
C.
Devereux
,
K.
Barros
,
S.
Tretiak
,
O.
Isayev
, and
A. E.
Roitberg
,
Nat. Commun.
10
,
2903
(
2019
).
54.
X.
Gao
,
F.
Ramezanghorbani
,
O.
Isayev
,
J. S.
Smith
, and
A. E.
Roitberg
,
J. Chem. Inf. Model.
60
,
3408
(
2020
).
56.
N. M.
O’Boyle
,
M.
Banck
,
C. A.
James
,
C.
Morley
,
T.
Vandermeersch
, and
G. R.
Hutchison
,
J. Cheminf.
3
,
33
(
2011
).
57.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
,
A.
Desmaison
,
A.
Kopf
,
E.
Yang
,
Z.
DeVito
,
M.
Raison
,
A.
Tejani
,
S.
Chilamkurthy
,
B.
Steiner
,
L.
Fang
,
J.
Bai
, and
S.
Chintala
, in
Advances in Neural Information Processing Systems
, edited by
H.
Wallach
,
H.
Larochelle
,
A.
Beygelzimer
,
F.
d’Alché Buc
,
E.
Fox
, and
R.
Garnett
(
Curran Associates, Inc.
,
2019
), Vol. 32, pp.
8024
8035
.
58.
M.
Wang
,
L.
Yu
,
D.
Zheng
,
Q.
Gan
,
Y.
Gai
,
Z.
Ye
,
M.
Li
,
J.
Zhou
,
Q.
Huang
,
C.
Ma
,
Z.
Huang
,
Q.
Guo
,
H.
Zhang
,
H.
Lin
,
J.
Zhao
,
J.
Li
,
A. J.
Smola
, and
Z.
Zhang
, arXiv:1909.01315 (
2019
).
59.
S.
Li
,
Y.
Zhao
,
R.
Varma
,
O.
Salpekar
,
P.
Noordhuis
,
T.
Li
,
A.
Paszke
,
J.
Smith
,
B.
Vaughan
,
P.
Damania
 et al., arXiv:2006.15704 (
2020
).
60.
I.
Loshchilov
and
F.
Hutter
, arXiv:1608.03983 (
2016
).
61.
D. P.
Kingma
and
J.
Ba
, arXiv:1412.6980 (
2014
).
62.
K.
Choromanski
,
V.
Likhosherstov
,
D.
Dohan
,
X.
Song
,
A.
Gane
,
T.
Sarlós
,
P.
Hawkins
,
J.
Davis
,
A.
Mohiuddin
,
L.
Kaiser
,
D.
Belanger
,
L.
Colwell
, and
A.
Weller
, arXiv:2009.14794 (
2020
).
63.
S.
Ioffe
and
C.
Szegedy
, “
Batch normalization: Accelerating deep network training by reducing internal covariate shift
,” arXiv:1502.03167 (
2015
).
64.
J. L.
Ba
,
J. R.
Kiros
, and
G. E.
Hinton
, arXiv:1607.06450 (
2016
).
65.
R.
Ramakrishnan
,
P. O.
Dral
,
M.
Rupp
, and
O. A.
von Lilienfeld
,
J. Chem. Theory Comput.
11
,
2087
(
2015
).
66.
Z.
Qiao
,
A. S.
Christensen
,
M.
Welborn
,
F. R.
Manby
,
A.
Anandkumar
, and
T. F
Miller
 III
, “
UNiTE: Unitary n-body tensor equivariant network with applications to quantum chemistry
,” arXiv:2105.14655 [cs.LG] (
2021
).
67.
P.
Pracht
,
E.
Caldeweyher
,
S.
Ehlert
, and
S.
Grimme
, ChemRxiv:8326202.v1 (
2019
).
68.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
,
Chem. Sci.
8
,
3192
(
2017
).
69.
J. S.
Smith
,
R.
Zubatyuk
,
B.
Nebgen
,
N.
Lubbers
,
K.
Barros
,
A. E.
Roitberg
,
O.
Isayev
, and
S.
Tretiak
,
Sci. Data
7
,
134
(
2020
).
70.
G. A.
DiLabio
,
E. R.
Johnson
, and
A.
Otero-de-la-Roza
,
Phys. Chem. Chem. Phys.
15
,
12821
(
2013
).
71.
D. G. A.
Smith
,
L. A.
Burns
,
K.
Patkowski
, and
C. D.
Sherrill
,
J. Phys. Chem. Lett.
7
,
2197
(
2016
).

Supplementary Material

You do not currently have access to this content.