Understanding the fundamental forces such as hydrophobic interactions in a crowded intracellular environment is necessary to comprehensively decipher the mechanisms of protein folding and biomolecular self-assemblies. The widely accepted entropic depletion view of crowding effects primarily attributes biomolecular compaction to the solvent excluded volume effects exerted by the “inert” crowders, neglecting their soft interactions with the biomolecule. In this study, we examine the effects of chemical nature and soft attractive energy of crowders on the water-mediated hydrophobic interaction between two non-polar neopentane solutes using molecular dynamics simulations. The crowded environment is modeled using dipeptides composed of polar and non-polar amino acids of varying sizes. The results show that amongst the non-polar crowders, Leu2 strengthens the hydrophobic interactions significantly, whereas the polar and small-sized non-polar crowders do not show significant strengthening. Distinct underlying thermodynamic driving forces are illustrated where the small-sized crowders drive hydrophobic interaction via a classic entropic depletion effect and the bulky crowders strengthen it by preferential interaction with the solute. A crossover from energy-stabilized solvent-separated pair to entropy-stabilized contact pair state is observed in the case of bulky non-polar (Leu2) and polar (Lys2) crowders. The influence of solute–crowder energy in affecting the dehydration energy penalty is found to be crucial for determining the neopentane association. The findings demonstrate that along with the entropic (size) effects, the energetic effects also play a crucial role in determining hydrophobic association. The results can be extended and have implications in understanding the impact of protein crowding with varying chemistry in modulating the protein free energy landscapes.

1.
S. B.
Zimmerman
and
S. O.
Trach
, “
Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli
,”
J. Mol. Biol.
222
,
599
620
(
1991
).
2.
R. J.
Ellis
, “
Macromolecular crowding: An important but neglected aspect of the intracellular environment
,”
Curr. Opin. Struct. Biol.
11
,
114
119
(
2001
).
3.
R. J.
Ellis
and
A. P.
Minton
, “
Cell biology: Join the crowd
,”
Nature
425
,
27
28
(
2003
).
4.
A. P.
Minton
, “
Implications of macromolecular crowding for protein assembly
,”
Curr. Opin. Struct. Biol.
10
,
34
39
(
2000
).
5.
M. S.
Cheung
,
D.
Klimov
, and
D.
Thirumalai
, “
Molecular crowding enhances native state stability and refolding rates of globular proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
4753
(
2005
).
6.
H.-X.
Zhou
,
G.
Rivas
, and
A. P.
Minton
, “
Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences
,”
Annu. Rev. Biophys.
37
,
375
397
(
2008
).
7.
S. B.
Zimmerman
and
A. P.
Minton
, “
Macromolecular crowding and confinement: Biochemical, biophysical, and physiological consequences
,”
Annu. Rev. Biophys. Biomol. Struct.
22
,
27
65
(
1993
).
8.
D.
Hall
and
A. P.
Minton
, “
Macromolecular crowding: Qualitative and semiquantitative successes, quantitative challenges
,”
Biochim. Biophys. Acta
1649
,
127
139
(
2003
).
9.
A.
Gershenson
and
L. M.
Gierasch
, “
Protein folding in the cell: Challenges and progress
,”
Curr. Opin. Struct. Biol.
21
,
32
41
(
2011
).
10.
D.
Gnutt
and
S.
Ebbinghaus
, “
The macromolecular crowding effect—From in vitro into the cell
,”
Biol. Chem.
397
,
37
44
(
2016
).
11.
K. A.
Dill
, “
Dominant forces in protein folding
,”
Biochemistry
29
,
7133
7155
(
1990
).
12.
D.
Chandler
, “
Interfaces and the driving force of hydrophobic assembly
,”
Nature
437
,
640
647
(
2005
).
13.
A.
Ben-Naim
,
Hydrophobic Interactions
(
Plenum
,
New York
,
1980
).
14.
F.
Chiti
and
C. M.
Dobson
, “
Protein misfolding, functional amyloid, and human disease
,”
Annu. Rev. Biochem.
75
,
333
366
(
2006
).
15.
O.
Keskin
,
A.
Gursoy
,
B.
Ma
, and
R.
Nussinov
, “
Principles of protein–protein interactions: What are the preferred ways for proteins to interact?
,”
Chem. Rev.
108
,
1225
1244
(
2008
).
16.
G.
Hummer
,
S.
Garde
,
A. E.
García
, and
L. R.
Pratt
, “
New perspectives on hydrophobic effects
,”
Chem. Phys.
258
,
349
370
(
2000
).
17.
N. T.
Southall
,
K. A.
Dill
, and
A. D. J.
Haymet
, “
A view of the hydrophobic effect
,”
J. Phys. Chem. B
106
,
521
533
(
2002
).
18.
L. R.
Pratt
, “
Molecular theory of hydrophobic effects: ‘She is too mean to have her name repeated’
,”
Annu. Rev. Phys. Chem.
53
,
409
436
(
2002
).
19.
D.
Ben-Amotz
, “
Water-mediated hydrophobic interactions
,”
Annu. Rev. Phys. Chem.
67
,
617
638
(
2016
).
20.
R.
Underwood
and
D.
Ben-Amotz
, “
Communication: Length scale dependent oil-water energy fluctuations
,”
J. Chem. Phys.
135
,
201102
(
2011
).
21.
M. V.
Athawale
,
J. S.
Dordick
, and
S.
Garde
, “
Osmolyte trimethylamine-N-oxide does not affect the strength of hydrophobic interactions: Origin of osmolyte compatibility
,”
J. Am. Chem. Soc.
89
,
858
866
(
2005
).
22.
N. F. A.
van der Vegt
and
D.
Nayar
, “
The hydrophobic effect and the role of cosolvents
,”
J. Phys. Chem. B
121
,
9986
9998
(
2017
).
23.
J.
Heyda
,
H. I.
Okur
,
J.
Hladílková
,
K. B.
Rembert
,
W.
Hunn
,
T.
Yang
,
J.
Dzubiella
,
P.
Jungwirth
, and
P. S.
Cremer
, “
Guanidinium can both cause and prevent the hydrophobic collapse of biomacromolecules
,”
J. Am. Chem. Soc.
139
,
863
870
(
2017
).
24.
J.
Mondal
,
G.
Stirnemann
, and
B. J.
Berne
, “
When does trimethylamine N-oxide fold a polymer chain and urea unfold it?
,”
J. Phys. Chem. B
117
,
8723
8732
(
2013
).
25.
S.
Lenton
,
N. H.
Rhys
,
J. J.
Towey
,
A. K.
Soper
, and
L.
Dougan
, “
Temperature-dependent segregation in alcohol–water binary mixtures is driven by water clustering
,”
J. Phys. Chem. B
122
,
7884
7894
(
2018
).
26.
A. J.
Bredt
and
D.
Ben-Amotz
, “
Influence of crowding on hydrophobic hydration-shell structure
,”
Phys. Chem. Chem. Phys.
22
,
11724
11730
(
2020
).
27.
X.
You
,
J. C.
Shirley
,
E.
Lee
, and
C. R.
Baiz
, “
Short- and long-range crowding effects on water’s hydrogen bond networks
,”
Cell Rep. Phys. Sci.
2
,
100419
(
2021
).
28.
S.
Asakura
and
F.
Oosawa
, “
Interaction between particles suspended in solutions of macromolecules
,”
J. Polym. Sci.
33
,
183
192
(
1958
).
29.
R.
Bhat
and
S. N.
Timasheff
, “
Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols
,”
Protein Sci.
1
,
1133
1143
(
1992
).
30.
E. J.
Meijer
and
D.
Frenkel
, “
Colloids dispersed in polymer solutions. A computer simulation study
,”
J. Chem. Phys.
100
,
6873
(
1994
).
31.
D.
Marenduzzo
,
K.
Finan
, and
P. R.
Cook
, “
The depletion attraction: An underappreciated force driving cellular organization
,”
J. Cell Biol.
175
,
681
686
(
2006
).
32.
M.
Feig
and
Y.
Sugita
, “
Variable interactions between protein crowders and biomolecular solutes are important in understanding cellular crowding
,”
J. Phys. Chem. B
116
,
599
605
(
2012
).
33.
R.
Harada
,
N.
Tochio
,
T.
Kigawa
,
Y.
Sugita
, and
M.
Feig
, “
Reduced native state stability in crowded cellular environment due to protein-protein interactions
,”
J. Am. Chem. Soc.
135
,
3696
3701
(
2013
).
34.
M.
Candotti
and
M.
Orozco
, “
The differential response of proteins to macromolecular crowding
,”
PLoS Comput. Biol.
12
,
e1005040
(
2016
).
35.
J.
Rosen
,
Y. C.
Kim
, and
J.
Mittal
, “
Modest protein-crowder attractive interactions can counteract enhancement of protein association by intermolecular excluded volume interactions
,”
J. Phys. Chem. B
115
,
2683
2689
(
2011
).
36.
D.
Nayar
, “
Small crowder interactions can drive hydrophobic polymer collapse as well as unfolding
,”
Phys. Chem. Chem. Phys.
22
,
18091
18101
(
2020
).
37.
M.
Senske
,
L.
Törk
,
B.
Born
,
M.
Havenith
,
C.
Herrmann
, and
S.
Ebbinghaus
, “
Protein stabilization by macromolecular crowding through enthalpy rather than entropy
,”
J. Am. Chem. Soc.
136
,
9036
9041
(
2014
).
38.
I. M.
Kuznetsova
,
B. Y.
Zaslavsky
,
L.
Breydo
,
K. T.
Turoverov
, and
V. N.
Uversky
, “
Beyond the excluded volume effects: Mechanistic complexity of the crowded milieu
,”
Molecules
20
,
1377
1409
(
2015
).
39.
M.
Sarkar
,
C.
Li
, and
G. J.
Pielak
, “
Soft interactions and crowding
,”
Biophys. Rev.
5
,
187
194
(
2013
).
40.
S. K.
Mukherjee
,
S.
Gautam
,
S.
Biswas
,
J.
Kundu
, and
P. K.
Chowdhury
, “
Do macromolecular crowding agents exert only an excluded volume effect? A protein solvation study
,”
J. Phys. Chem. B
119
,
14145
14156
(
2015
).
41.
D.
Gnutt
,
M.
Gao
,
O.
Brylski
,
M.
Heyden
, and
S.
Ebbinghaus
, “
Excluded-volume effects in living cells
,”
Angew. Chem., Int. Ed.
54
,
2548
2551
(
2015
).
42.
N.
Giovambattista
,
P. J.
Rossky
, and
P. G.
Debenedetti
, “
Computational studies of pressure, temperature, and surface effects on the structure and thermodynamics of confined water
,”
Annu. Rev. Phys. Chem.
63
,
179
200
(
2012
).
43.
W. B.
Monteith
,
R. D.
Cohen
,
A. E.
Smith
,
E.
Guzman-Cisneros
, and
G. J.
Pielak
, “
Quinary structure modulates protein stability in cells
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
1739
1742
(
2015
).
44.
M.
Sarkar
,
A. E.
Smith
, and
G. J.
Pielak
, “
Impact of reconstituted cytosol on protein stability
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
19342
19347
(
2013
).
45.
X.
Huang
,
C. J.
Margulis
, and
B. J.
Berne
, “
Do molecules as small as neopentane induce a hydrophobic response similar to that of large hydrophobic surfaces?
,”
J. Phys. Chem. B
107
,
11742
11748
(
2003
).
46.
C. T.
Andrews
and
A. H.
Elcock
, “
Molecular dynamics simulations of highly crowded amino acid solutions: Comparisons of eight different force field combinations with experiment and with each other
,”
J. Chem. Theory Comput.
9
,
4585
4602
(
2013
).
47.
K. A.
Sharp
, “
Analysis of the size dependence of macromolecular crowding shows that smaller is better
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
7990
7995
(
2015
).
48.
W. L.
Jorgensen
,
J. D.
Madura
, and
C. J.
Swenson
, “
Optimized intermolecular potential functions for liquid hydrocarbons
,”
J. Am. Chem. Soc.
106
,
6638
6646
(
1984
).
49.
C.
Oostenbrink
,
A.
Villa
,
A. E.
Mark
, and
W. F.
van Gunsteren
, “
A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6
,”
J. Comput. Chem.
25
,
1656
1676
(
2004
).
50.
A.
Bondi
, “
van der Waals volumes and radii
,”
J. Phys. Chem.
68
,
441
451
(
1964
).
51.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
52.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N · log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
10092
(
1993
).
53.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
, “
The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method
,”
J. Comput. Chem.
13
,
1011
1021
(
1992
).
54.
H.-A.
Yu
and
M.
Karplus
, “
A thermodynamic analysis of solvation
,”
J. Chem. Phys.
89
,
2366
2379
(
1988
).
55.
N. F. A.
van der Vegt
and
W. F.
van Gunsteren
, “
Entropic contributions in cosolvent binding to hydrophobic solutes in water
,”
J. Phys. Chem. B
108
,
1056
1064
(
2004
).
56.
N. F. A.
van der Vegt
,
D.
Trzesniak
,
B.
Kasumaj
, and
W. F.
van Gunsteren
, “
Energy-entropy compensation in the transfer of nonpolar solutes from water to cosolvent-water mixtures
,”
ChemPhysChem
5
,
144
147
(
2004
).
57.
T. A.
Özal
and
N. F. A.
van der Vegt
, “
Confusing cause and effect: Energy-entropy compensation in the preferential solvation of a nonpolar solute in dimethyl sulfoxide/water mixtures
,”
J. Phys. Chem. B
110
,
12104
12112
(
2006
).
58.
M.-E.
Lee
and
N. F. A.
van der Vegt
, “
Does urea denature hydrophobic interactions?
,”
J. Am. Chem. Soc.
128
,
4948
4949
(
2006
).
59.
N. F. A.
van der Vegt
,
M.-E.
Lee
,
D.
Trzesniak
, and
W. F.
van Gunsteren
, “
Enthalpy-entropy compensation in the effects of urea on hydrophobic interactions
,”
J. Phys. Chem. B
110
,
12852
12855
(
2006
).

Supplementary Material

You do not currently have access to this content.