Nonadiabatic molecular dynamics occur in a wide range of chemical reactions and femtochemistry experiments involving electronically excited states. These dynamics are hard to treat numerically as the system’s complexity increases, and it is thus desirable to have accurate yet affordable methods for their simulation. Here, we introduce a linearized semiclassical method, the generalized discrete truncated Wigner approximation (GDTWA), which is well-established in the context of quantum spin lattice systems, into the arena of chemical nonadiabatic systems. In contrast to traditional continuous mapping approaches, e.g., the Meyer–Miller–Stock–Thoss and the spin mappings, GDTWA samples the electron degrees of freedom in a discrete phase space and thus forbids an unphysical unbounded growth of electronic state populations. The discrete sampling also accounts for an effective reduced but non-vanishing zero-point energy without an explicit parameter, which makes it possible to treat the identity operator and other operators on an equal footing. As numerical benchmarks on two linear vibronic coupling models and Tully’s models show, GDTWA has a satisfactory accuracy in a wide parameter regime, independent of whether the dynamics is dominated by relaxation or by coherent interactions. Our results suggest that the method can be very adequate to treat challenging nonadiabatic dynamics problems in chemistry and related fields.

1.
M.
Hillery
,
R. F.
O’Connell
,
M. O.
Scully
, and
E. P.
Wigner
, “
Distribution functions in physics: Fundamentals
,”
Phys. Rep.
106
,
121
167
(
1984
).
2.
M. J.
Steel
,
M. K.
Olsen
,
L. I.
Plimak
,
P. D.
Drummond
,
S. M.
Tan
,
M. J.
Collett
,
D. F.
Walls
, and
R.
Graham
, “
Dynamical quantum noise in trapped Bose-Einstein condensates
,”
Phys. Rev. A
58
,
4824
(
1998
).
3.
P. B.
Blakie
,
A. S.
Bradley
,
M. J.
Davis
,
R. J.
Ballagh
, and
C. W.
Gardiner
, “
Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques
,”
Adv. Phys.
57
,
363
455
(
2008
).
4.
A.
Polkovnikov
, “
Phase space representation of quantum dynamics
,”
Ann. Phys.
325
,
1790
1852
(
2010
).
5.
J.
Schachenmayer
,
A.
Pikovski
, and
A. M.
Rey
, “
Many-body quantum spin dynamics with Monte Carlo trajectories on a discrete phase space
,”
Phys. Rev. X
5
,
011022
(
2015
).
6.
B.
Zhu
,
A. M.
Rey
, and
J.
Schachenmayer
, “
A generalized phase space approach for solving quantum spin dynamics
,”
New J. Phys.
21
,
082001
(
2019
).
7.
S. M.
Davidson
and
A.
Polkovnikov
, “
SU(3) semiclassical representation of quantum dynamics of interacting spins
,”
Phys. Rev. Lett.
114
,
045701
(
2015
).
8.
J.
Wurtz
,
A.
Polkovnikov
, and
D.
Sels
, “
Cluster truncated Wigner approximation in strongly interacting systems
,”
Ann. Phys.
395
,
341
365
(
2018
).
9.
A.
Polkovnikov
, “
Quantum corrections to the dynamics of interacting Bosons: Beyond the truncated Wigner approximation
,”
Phys. Rev. A
68
,
053604
(
2003
).
10.
A. P.
Orioli
,
A.
Safavi-Naini
,
M. L.
Wall
, and
A. M.
Rey
, “
Nonequilibrium dynamics of Spin-Boson models from phase-space methods
,”
Phys. Rev. A
96
,
033607
(
2017
).
11.
L.
Pucci
,
A.
Roy
, and
M.
Kastner
, “
Simulation of quantum spin dynamics by phase space sampling of Bogoliubov-Born-Green-Kirkwood-Yvon trajectories
,”
Phys. Rev. B
93
,
174302
(
2016
).
12.
H.-D.
Meyer
and
W. H.
Miller
, “
A classical analog for electronic degrees of freedom in nonadiabatic collision processes
,”
J. Chem. Phys.
70
,
3214
3223
(
1979
).
13.
S. J.
Cotton
and
W. H.
Miller
, “
Symmetrical windowing for quantum states in quasi-classical trajectory simulations: Application to electronically non-adiabatic processes
,”
J. Chem. Phys.
139
,
234112
(
2013
).
14.
G.
Stock
and
M.
Thoss
, “
Semiclassical description of nonadiabatic quantum dynamics
,”
Phys. Rev. Lett.
78
,
578
(
1997
).
15.
S. J.
Cotton
and
W. H.
Miller
, “
Symmetrical windowing for quantum states in quasi-classical trajectory simulations
,”
J. Phys. Chem. A
117
,
7190
7194
(
2013
).
16.
J.
Liu
, “
Isomorphism between the multi-state Hamiltonian and the second-quantized many-electron Hamiltonian with only 1-electron interactions
,”
J. Chem. Phys.
146
,
024110
(
2017
).
17.
X.
He
and
J.
Liu
, “
A new perspective for nonadiabatic dynamics with phase space mapping models
,”
J. Chem. Phys.
151
,
024105
(
2019
).
18.
J.
Liu
, “
A unified theoretical framework for mapping models for the multi-state Hamiltonian
,”
J. Chem. Phys.
145
,
204105
(
2016
).
19.
W. H.
Miller
and
S. J.
Cotton
, “
Classical molecular dynamics simulation of electronically non-adiabatic processes
,”
Faraday Discuss.
195
,
9
30
(
2016
).
20.
M. A. C.
Saller
,
A.
Kelly
, and
J. O.
Richardson
, “
On the identity of the identity operator in nonadiabatic linearized semiclassical dynamics
,”
J. Chem. Phys.
150
,
071101
(
2019
).
21.
M. A. C.
Saller
,
A.
Kelly
, and
J. O.
Richardson
, “
Improved population operators for multi-state nonadiabatic dynamics with the mixed quantum-classical mapping approach
,”
Faraday Discuss.
221
,
150
167
(
2019
).
22.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
, “
Semiclassical theory of electronically nonadiabatic dynamics: Results of a linearized approximation to the initial value representation
,”
J. Chem. Phys.
109
,
7064
7074
(
1998
).
23.
H.
Kim
,
A.
Nassimi
, and
R.
Kapral
, “
Quantum-classical Liouville dynamics in the mapping basis
,”
J. Chem. Phys.
129
,
084102
(
2008
).
24.
A.
Kelly
,
R.
van Zon
,
J.
Schofield
, and
R.
Kapral
, “
Mapping quantum-classical Liouville equation: Projectors and trajectories
,”
J. Chem. Phys.
136
,
084101
(
2012
).
25.
P.
Huo
and
D. F.
Coker
, “
Communication: Partial linearized density matrix dynamics for dissipative, non-adiabatic quantum evolution
,”
J. Chem. Phys.
135
,
201101
(
2011
).
26.
P.
Huo
,
T. F.
Miller
 III
, and
D. F.
Coker
, “
Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics
,”
J. Chem. Phys.
139
,
151103
(
2013
).
27.
P.
Huo
and
D. F.
Coker
, “
Consistent schemes for non-adiabatic dynamics derived from partial linearized density matrix propagation
,”
J. Chem. Phys.
137
,
22A535
(
2012
).
28.
C.-Y.
Hsieh
and
R.
Kapral
, “
Nonadiabatic dynamics in open quantum-classical systems: Forward-backward trajectory solution
,”
J. Chem. Phys.
137
,
22A507
(
2012
).
29.
C.-Y.
Hsieh
and
R.
Kapral
, “
Analysis of the forward-backward trajectory solution for the mixed quantum-classical Liouville equation
,”
J. Chem. Phys.
138
,
134110
(
2013
).
30.
R.
Kapral
and
G.
Ciccotti
, “
Mixed quantum-classical dynamics
,”
J. Chem. Phys.
110
,
8919
8929
(
1999
).
31.
G.
Stock
and
U.
Müller
, “
Flow of zero-point energy and exploration of phase space in classical simulations of quantum relaxation dynamics
,”
J. Chem. Phys.
111
,
65
76
(
1999
).
32.
U.
Müller
and
G.
Stock
, “
Flow of zero-point energy and exploration of phase space in classical simulations of quantum relaxation dynamics. II. Application to nonadiabatic processes
,”
J. Chem. Phys.
111
,
77
88
(
1999
).
33.
S. J.
Cotton
and
W. H.
Miller
, “
A symmetrical quasi-classical spin-mapping model for the electronic degrees of freedom in non-adiabatic processes
,”
J. Phys. Chem. A
119
,
12138
12145
(
2015
).
34.
H.-D.
Meyer
and
W. H.
Miller
, “
Classical models for electronic degrees of freedom: Derivation via spin analogy and application to F*+ H2 → f+ H2
,”
J. Chem. Phys.
71
,
2156
2169
(
1979
).
35.
J. R.
Mannouch
and
J. O.
Richardson
, “
A partially linearized spin-mapping approach for nonadiabatic dynamics. I. Derivation of the theory
,”
J. Chem. Phys.
153
,
194109
(
2020
).
36.
J. R.
Mannouch
and
J. O.
Richardson
, “
A partially linearized spin-mapping approach for nonadiabatic dynamics. II. Analysis and comparison with related approaches
,”
J. Chem. Phys.
153
,
194110
(
2020
).
37.
J. E.
Runeson
and
J. O.
Richardson
, “
Spin-mapping approach for nonadiabatic molecular dynamics
,”
J. Chem. Phys.
151
,
044119
(
2019
).
38.
J. E.
Runeson
and
J. O.
Richardson
, “
Generalized spin mapping for quantum-classical dynamics
,”
J. Chem. Phys.
152
,
084110
(
2020
).
39.
N.
Bellonzi
,
A.
Jain
, and
J. E.
Subotnik
, “
An assessment of mean-field mixed semiclassical approaches: Equilibrium populations and algorithm stability
,”
J. Chem. Phys.
144
,
154110
(
2016
).
40.
J.
Wurtz
and
A.
Polkovnikov
, “
Quantum diffusion in spin chains with phase space methods
,”
Phys. Rev. E
101
,
052120
(
2020
).
41.
C.
Gardiner
,
P.
Zoller
, and
P.
Zoller
,
Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics
(
Springer Science & Business Media
,
2004
).
42.
D. F.
Walls
and
G. J.
Milburn
,
Quantum Optics
(
Springer Science & Business Media
,
2007
).
43.
J.
Ruostekoski
and
L.
Isella
, “
Dissipative quantum dynamics of bosonic atoms in a shallow 1D optical lattice
,”
Phys. Rev. Lett.
95
,
110403
(
2005
).
44.
L.
Isella
and
J.
Ruostekoski
, “
Nonadiabatic dynamics of a Bose-Einstein condensate in an optical lattice
,”
Phys. Rev. A
72
,
011601
(
2005
).
45.
R.
Scott
,
D.
Hutchinson
,
T.
Judd
, and
T.
Fromhold
, “
Quantifying finite-temperature effects in atom-chip interferometry of Bose-Einstein condensates
,”
Phys. Rev. A
79
,
063624
(
2009
).
46.
W.
Domcke
,
D.
Yarkony
, and
H.
Köppel
,
Conical Intersections: Electronic Structure, Dynamics and Spectroscopy
(
World Scientific
,
2004
), Vol. 15.
47.
A.
Kelly
and
Y. M.
Rhee
, “
Mixed quantum-classical description of excitation energy transfer in a model Fenna–Matthews–Olsen complex
,”
J. Phys. Chem. Lett.
2
,
808
812
(
2011
).
48.
G.
Tao
and
W. H.
Miller
, “
Semiclassical description of electronic excitation population transfer in a model photosynthetic system
,”
J. Phys. Chem. Lett.
1
,
891
894
(
2010
).
49.

ZPE leakage also happens between nuclei DoFs and causes the violation of detailed balance.64,65 GDTWA is a novel sampling strategy for the electronic DoFs and therefore cannot improve the ZPE leakage of the nuclei DoFs. We thus restrict the discussion of leakage to the electronic phase space.

50.
W. K.
Wootters
, “
A Wigner-function formulation of finite-state quantum mechanics
,”
Ann. Phys.
176
,
1
21
(
1987
).
51.
K. S.
Gibbons
,
M. J.
Hoffman
, and
W. K.
Wootters
, “
Discrete phase space based on finite fields
,”
Phys. Rev. A
70
,
062101
(
2004
).
52.
J. C.
Tully
, “
Molecular dynamics with electronic transitions
,”
J. Chem. Phys.
93
,
1061
1071
(
1990
).
53.
R. A.
Bertlmann
and
P.
Krammer
, “
Bloch vectors for qudits
,”
J. Phys. A: Math. Theor.
41
,
235303
(
2008
).
54.

Here, we call Aα(0) a discrete quasi-phase point operator because it plays the same role as the discrete phase point operator in Wootters’s discrete phase space representation but without the orthogonality Tr {Aα(0)(0)} ∝ δαβ.

55.
X.
Gao
,
M. A. C.
Saller
,
Y.
Liu
,
A.
Kelly
,
J. O.
Richardson
, and
E.
Geva
, “
Benchmarking quasiclassical mapping Hamiltonian methods for simulating electronically nonadiabatic molecular dynamics
,”
J. Chem. Theory Comput.
16
,
2883
2895
(
2020
).
56.
H.
Köppel
,
L. S.
Cederbaum
, and
W.
Domcke
, “
Interplay of Jahn–Teller and pseudo-Jahn–Teller vibronic dynamics in the benzene cation
,”
J. Chem. Phys.
89
,
2023
2040
(
1988
).
57.
H.
Köppel
, “
New ultrafast nonradiative decay mechanism in the benzene radical cation
,”
Chem. Phys. Lett.
205
,
361
370
(
1993
).
58.
R.
Schneider
and
W.
Domcke
, “
Surface-hopping-induced femtosecond vibrational dephasing in strongly vibronically coupled systems
,”
Chem. Phys. Lett.
159
,
61
65
(
1989
).
59.
U.
Manthe
,
H. D.
Meyer
, and
L. S.
Cederbaum
, “
Wave-packet dynamics within the multiconfiguration Hartree framework: General aspects and application to NOCl
,”
J. Chem. Phys.
97
,
3199
3213
(
1992
).
60.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
, “
The multi-configurational time-dependent Hartree approach
,”
Chem. Phys. Lett.
165
,
73
78
(
1990
).
61.
M.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H.-D.
Meyer
, “
The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propagating wavepackets
,”
Phys. Rep.
324
,
1
105
(
2000
).
62.
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
, “
Multimode molecular dynamics beyond the Born-Oppenheimer approximation
,”
Adv. Chem. Phys.
57
,
59
246
(
1984
).
63.
W.
Domcke
and
G.
Stock
, “
Theory of ultrafast nonadiabatic excited-state processes and their spectroscopic detection in real time
,”
Adv. Chem. Phys.
100
,
1
169
(
1997
).
64.
S.
Habershon
and
D. E.
Manolopoulos
, “
Zero point energy leakage in condensed phase dynamics: An assessment of quantum simulation methods for liquid water
,”
J. Chem. Phys.
131
,
244518
(
2009
).
65.
F.
Brieuc
,
Y.
Bronstein
,
H.
Dammak
,
P.
Depondt
,
F.
Finocchi
, and
M.
Hayoun
, “
Zero-point energy leakage in quantum thermal bath molecular dynamics simulations
,”
J. Chem. Theory Comput.
12
,
5688
5697
(
2016
).

Supplementary Material

You do not currently have access to this content.