The hydroxyl radical is the primary reactive oxygen species produced by the radiolysis of water and is a significant source of radiation damage to living organisms. Mobility of the hydroxyl radical at low temperatures and/or high pressures is hence a potentially important factor in determining the challenges facing psychrophilic and/or barophilic organisms in high-radiation environments (e.g., ice-interface or undersea environments in which radiative heating is a potential heat and energy source). Here, we estimate the diffusion coefficient for the hydroxyl radical in aqueous solution using a hierarchical Bayesian model based on atomistic molecular dynamics trajectories in TIP4P/2005 water over a range of temperatures and pressures.

1.
Y.
Blanco
,
G.
de Diego-Castilla
,
D.
Viúdez-Moreiras
,
E.
Cavalcante-Silva
,
J. A.
Rodríguez-Manfredi
,
A. F.
Davila
,
C. P.
McKay
, and
V.
Parro
, “
Effects of gamma and electron radiation on the structural integrity of organic molecules and macromolecular biomarkers measured by microarray immunoassays and their astrobiological implications
,”
Astrobiology
18
,
1497
(
2018
).
2.
T. C.
Onstott
,
D. P.
Moser
,
S. M.
Pfiffner
,
J. K.
Fredrickson
,
F. J.
Brockman
,
T. J.
Phelps
,
D. C.
White
,
A.
Peacock
,
D.
Balkwill
,
R.
Hoover
,
L. R.
Krumholz
,
M.
Borscik
,
T. L.
Kieft
, and
R.
Wilson
, “
Indigenous and contaminant microbes in ultradeep mines
,”
Environ. Microbiol.
5
,
1168
1191
(
2003
).
3.
J. D.
Tarnas
,
J. F.
Mustard
,
B.
Sherwood Lollar
,
M. S.
Bramble
,
K. M.
Cannon
,
A. M.
Palumbo
, and
A.-C.
Plesa
, “
Radiolytic H2 production on Noachian Mars: Implications for habitability and atmospheric warming
,”
Earth Planet. Sci. Lett.
502
,
133
145
(
2018
).
4.
L.
Ojha
,
S.
Karunatillake
,
S.
Karimi
, and
J.
Buffo
, “
Amagmatic hydrothermal systems on Mars from radiogenic heat
,”
Nat. Commun.
12
,
1754
(
2021
).
5.
J. D.
Tarnas
,
J. F.
Mustard
,
B.
Sherwood Lollar
,
V.
Stamenković
,
K. M.
Cannon
,
J.-P.
Lorand
,
T. C.
Onstott
,
J. R.
Michalski
,
O.
Warr
,
A. M.
Palumbo
, and
A.-C.
Plesa
, “
Earth-like habitable environments in the subsurface of Mars
,”
Astrobiology
21
,
741
(
2021
).
6.
O.
White
,
J. A.
Eisen
,
J. F.
Heidelberg
,
E. K.
Hickey
,
J. D.
Peterson
,
R. J.
Dodson
,
D. H.
Haft
,
M. L.
Gwinn
,
W. C.
Nelson
,
D. L.
Richardson
,
K. S.
Moffat
,
H.
Qin
,
L.
Jiang
,
W.
Pamphile
,
M.
Crosby
,
M.
Shen
,
J. J.
Vamathevan
,
P.
Lam
,
L.
McDonald
,
T.
Utterback
,
C.
Zalewski
,
K. S.
Makarova
,
L.
Aravind
,
M. J.
Daly
,
K. W.
Minton
,
R. D.
Fleischmann
,
K. A.
Ketchum
,
K. E.
Nelson
,
S.
Salzberg
,
H. O.
Smith
,
J. C.
Venter
, and
C. M.
Fraser
, “
Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1
,”
Science
286
,
1571
1577
(
1999
).
7.
R.
Cavicchioli
, “
Extremophiles and the search for extraterrestrial life
,”
Astrobiology
2
,
281
292
(
2002
).
8.
A. C.
Munteanu
,
V.
Uivarosi
, and
A.
Andries
, “
Recent progress in understanding the molecular mechanisms of radioresistance in Deinococcus bacteria
,”
Extremophiles
19
,
707
719
(
2015
).
9.
J. A.
LaVerne
, “
OH radicals and oxidizing products in the gamma radiolysis of water
,”
Radiat. Res.
153
,
196
200
(
2000
).
10.
M. S.
Matheson
, “
The formation and detection of intermediates in water radiolysis
,”
Radiat. Res., Suppl.
4
,
1
23
(
1964
).
11.
D.
Ghosal
,
M. V.
Omelchenko
,
E. K.
Gaidamakova
,
V. Y.
Matrosova
,
A.
Vasilenko
,
A.
Venkateswaran
,
M.
Zhai
,
H. M.
Kostandarithes
,
H.
Brim
,
K. S.
Makarova
,
L. P.
Wackett
,
J. K.
Fredrickson
, and
M. J.
Daly
, “
How radiation kills cells: Survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress
,”
FEMS Microbiol. Rev.
29
,
361
375
(
2005
).
12.
R.
Roots
and
S.
Okada
, “
Estimation of life times and diffusion distances of radicals involved in x-ray-induced DNA strand breaks or killing of mammalian cells
,”
Radiat. Res.
64
,
306
320
(
1975
).
13.
J.
Du
and
J. M.
Gebicki
, “
Proteins are major initial cell targets of hydroxyl free radicals
,”
Int. J. Biochem. Cell Biol.
36
,
2334
2343
(
2004
).
14.
M. J.
Davies
,
S.
Fu
, and
R. T.
Dean
, “
Protein hydroperoxides can give rise to reactive free radicals
,”
Biochem. J.
305
,
643
649
(
1995
).
15.
K. J.
Barnham
,
C. L.
Masters
, and
A. I.
Bush
, “
Neurodegenerative diseases and oxidative stress
,”
Nat. Rev. Drug Discovery
3
,
205
214
(
2004
).
16.
H. A.
Schwarz
, “
Applications of the spur diffusion model to the radiation chemistry of aqueous solutions
,”
J. Phys. Chem.
73
,
1928
1937
(
1969
).
17.
M.
Huerta Parajon
,
P.
Rajesh
,
T.
Mu
,
S. M.
Pimblott
, and
J. A.
LaVerne
, “
H atom yields in the radiolysis of water
,”
Radiat. Phys. Chem.
77
,
1203
1207
(
2008
).
18.
B. G.
Ershov
and
A. V.
Gordeev
, “
A model for radiolysis of water and aqueous solutions of H2, H2O2 and O2
,”
Radiat. Phys. Chem.
77
,
928
935
(
2008
).
19.
K. A.
Omar
,
K.
Hasnaoui
, and
A.
de la Lande
, “
First-principles simulations of biological molecules subjected to ionizing radiation
,”
Annu. Rev. Phys. Chem.
72
,
445
465
(
2021
).
20.
Z.-H.
Loh
,
G.
Doumy
,
C.
Arnold
,
L.
Kjellsson
,
S. H.
Southworth
,
A.
Al Haddad
,
Y.
Kumagai
,
M.-F.
Tu
,
P. J.
Ho
,
A. M.
March
,
R. D.
Schaller
,
M. S.
Bin Mohd Yusof
,
T.
Debnath
,
M.
Simon
,
R.
Welsch
,
L.
Inhester
,
K.
Khalili
,
K.
Nanda
,
A. I.
Krylov
,
S.
Moeller
,
G.
Coslovich
,
J.
Koralek
,
M. P.
Minitti
,
W. F.
Schlotter
,
J.-E.
Rubensson
,
R.
Santra
, and
L.
Young
, “
Observation of the fastest chemical processes in the radiolysis of water
,”
Science
367
,
179
182
(
2020
).
21.
I.
Jordan
,
M.
Huppert
,
D.
Rattenbacher
,
M.
Peper
,
D.
Jelovina
,
C.
Perry
,
A.
von Conta
,
A.
Schild
, and
H. J.
Wörner
, “
Attosecond spectroscopy of liquid water
,”
Science
369
,
974
979
(
2020
).
22.
S.
Thürmer
,
M.
Ončák
,
N.
Ottosson
,
R.
Seidel
,
U.
Hergenhahn
,
S. E.
Bradforth
,
P.
Slavíček
, and
B.
Winter
, “
On the nature and origin of dicationic, charge-separated species formed in liquid water on x-ray irradiation
,”
Nat. Chem.
5
,
590
596
(
2013
).
23.
X.
Ren
,
E.
Wang
,
A. D.
Skitnevskaya
,
A. B.
Trofimov
,
K.
Gokhberg
, and
A.
Dorn
, “
Experimental evidence for ultrafast intermolecular relaxation processes in hydrated biomolecules
,”
Nat. Phys.
14
,
1062
1066
(
2018
).
24.
B.
Kirchner
,
J.
Stubbs
, and
D.
Marx
, “
Fast anomalous diffusion of small hydrophobic species in water
,”
Phys. Rev. Lett.
89
,
215901
(
2002
).
25.
S. T.
Roberts
,
P. B.
Petersen
,
K.
Ramasesha
,
A.
Tokmakoff
,
I. S.
Ufimtsev
, and
T. J.
Martinez
, “
Observation of a Zundel-like transition state during proton transfer in aqueous hydroxide solutions
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
15154
15159
(
2009
).
26.
D.
Marx
,
A.
Chandra
, and
M. E.
Tuckerman
, “
Aqueous basic solutions: Hydroxide solvation, structural diffusion, and comparison to the hydrated proton
,”
Chem. Rev.
110
,
2174
2216
(
2010
).
27.
I. M.
Svishchev
and
A. Y.
Plugatyr
, “
Hydroxyl radical in aqueous solution: Computer simulation
,”
J. Phys. Chem. B
109
,
4123
4128
(
2005
).
28.
C.
Knight
and
G. A.
Voth
, “
The curious case of the hydrated proton
,”
Acc. Chem. Res.
45
,
101
109
(
2012
).
29.
M. E.
Tuckerman
,
D.
Marx
, and
M.
Parrinello
, “
The nature and transport mechanism of hydrated hydroxide ions in aqueous solution
,”
Nature
417
,
925
9299
(
2002
).
30.
M.
Chen
,
L.
Zheng
,
B.
Santra
,
H.-Y.
Ko
,
R. A.
DiStasio
, Jr.
,
M. L.
Klein
,
R.
Car
, and
X.
Wu
, “
Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer
,”
Nat. Chem.
10
,
413
419
(
2018
).
31.
M.
Ceriotti
,
W.
Fang
,
P. G.
Kusalik
,
R. H.
McKenzie
,
A.
Michaelides
,
M. A.
Morales
, and
T. E.
Markland
, “
Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges
,”
Chem. Rev.
116
,
7529
7550
(
2016
).
32.
L. M.
Dorfman
and
G. E.
Adams
,
Reactivity of the Hydroxyl Radical in Aqueous Solutions
(
U.S. Department of Commerce, National Bureau of Standards
,
Washington, DC
,
1973
).
33.
R. B.
Best
,
X.
Zhu
,
J.
Shim
,
P. E. M.
Lopes
,
J.
Mittal
,
M.
Feig
, and
J. A. D.
Mackerell
, “
Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ(1) and χ(2) dihedral angles
,”
J. Chem. Theory Comput.
8
,
3257
3273
(
2012
).
34.
J. L. F.
Absacal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
35.
I. N.
Tsimpanogiannis
,
O. A.
Moultos
,
L. F.
Franco
,
M. B. M.
Spera
,
M.
Erdös
, and
I. G.
Economou
, “
Self-diffusion coefficient of bulk and confined water: A critical review of classical molecular simulation studies
,”
Mol. Simul.
45
,
425
453
(
2019
).
36.
A.
Pabis
,
J.
Szala-Bilnik
, and
D.
Swiatla-Wojcik
, “
Molecular dynamics study of the hydration of the hydroxyl radical at body temperature
,”
Phys. Chem. Chem. Phys.
13
,
9458
9468
(
2011
).
37.
P.
Bopp
,
G.
Jancsó
, and
K.
Heinzinger
, “
An improved potential for non-rigid water molecules in the liquid phase
,”
Chem. Phys. Lett.
98
,
129
133
(
1983
).
38.
M. H.
Kalos
and
P. A.
Whitlock
,
Monte Carlo Methods, Volume I: Basics
(
John Wiley and Sons
,
New York, NY
,
1986
).
39.
G. J.
Martyna
,
D. J.
Tobias
, and
M. L.
Klein
, “
Constant pressure molecular dynamics algorithms
,”
J. Chem. Phys.
101
,
4177
4189
(
1994
).
40.
S. E.
Feller
,
Y.
Zhang
,
R. W.
Pastor
, and
B. R.
Brooks
, “
Constant pressure molecular dynamics simulation: The Langevin piston method
,”
J. Chem. Phys.
103
,
4613
4621
(
1995
).
41.
J. C.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R. D.
Skeel
,
L.
Kalé
, and
K.
Schulten
, “
Scalable molecular dynamics with NAMD
,”
J. Comput. Chem.
26
,
1781
1802
(
2005
).
42.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
(
33–38
),
27
28
(
1996
).
43.
J. V.
Ribeiro
,
B.
Radak
,
J.
Stone
,
J.
Gullingsrud
,
J.
Saam
, and
J.
Phillips
, “psfgen Plugin for VMD,” Software File (2020).
44.
L.
Martínez
,
R.
Andrade
,
E.
Birgin
, and
J. M.
Martínez
, “
PACKMOL: A package for building initial configurations for molecular dynamics simulations
,”
J. Comput. Chem.
30
,
2157
2164
(
2009
).
45.
S.
von Bülow
,
J. T.
Bullerjahn
, and
G.
Hummel
, “
Systematic errors in diffusion coefficients from long-time molecular dynamics simulations at constant pressure
,”
J. Chem. Phys.
153
,
021101
(
2020
).
46.
J. T.
Bullerjahn
,
S.
von Bülow
, and
G.
Hummel
, “
Optimal estimates of self-diffusion coefficients from molecular dynamics simulations
,”
J. Chem. Phys.
153
,
024116
(
2020
).
47.
I.-C.
Yeh
and
G.
Hummer
, “
System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions
,”
J. Phys. Chem. B
108
,
15873
(
2004
).
48.
M. A.
González
and
J. L. F.
Abascal
, “
The shear viscosity of rigid water models
,”
J. Chem. Phys.
132
,
096101
(
2010
).
49.
S.
Du
and
J. S.
Francisco
, “
The OH radical-H2O molecular interaction potential
,”
J. Chem. Phys.
124
,
224318
(
2006
).
50.
A.
Gelman
,
J. B.
Carlin
,
H. S.
Stern
, and
D. B.
Rubin
,
Bayesian Data Analysis
, 2nd ed. (
Chapman and Hall
,
London
,
2003
).
51.
R Core Team
,
R: A Language and Environment for Statistical Computing
(
R Foundation for Statistical Computing
,
Vienna, Austria
,
2021
).
52.
J. C.
Nash
,
Compact Numerical Methods for Computers. Linear Algebra and Function Minimization
(
Adam Hilger
,
1990
).
53.
L.
Scrucca
,
M.
Fop
,
T. B.
Murphy
, and
A. E.
Raftery
, “
mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models
,”
R J.
8
,
289
317
(
2016
).
54.
M. D.
Homan
and
A.
Gelman
, “
The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo
,”
J. Mach. Learn. Res.
15
,
1593
1623
(
2014
); available at http://jmlr.org/papers/v15/hoffman14a.html.
55.
Stan Development Team
, “RStan: The R Interface to Stan” (2020), R package version 2.21.2.
56.
Stan Development Team
, “Stan: A C++ Library for Probability and Sampling” (2020), Software Library.
57.
A.
Gelman
and
D. B.
Rubin
, “
Inference from iterative simulation using multiple sequences (with discussion)
,”
Stat. Sci.
7
,
457
511
(
1992
).
58.
G. C.
Sosso
,
S.
Caravati
,
G.
Rotskoff
,
S.
Vaikuntanathan
, and
A.
Hassanali
, “
On the role of nonspherical cavities in short length-scale density fluctuations in water
,”
J. Phys. Chem. A
121
,
370
380
(
2017
).
59.
N.
Ansari
,
R.
Dandekar
,
S.
Caravati
,
G. C.
Sosso
, and
A.
Hassanali
, “
High and low density patches in simulated liquid water
,”
J. Chem. Phys.
149
,
204507
(
2018
).
60.
G.
Camisasca
,
H.
Pathak
,
K. T.
Wikfeldt
, and
L. G. M.
Pettersson
, “
Radial distribution functions of water: Models vs experiments
,”
J. Chem. Phys.
151
,
044502
(
2019
).
61.
A. M.
Villa
,
S. M.
Doglia
,
L. D.
Gioia
,
L.
Bertini
, and
A.
Natalello
, “
Anomalous intrinsic fluorescence of HCl and NaOH aqueous solutions
,”
J. Phys. Chem. Lett.
10
,
7230
7236
(
2019
).

Supplementary Material

You do not currently have access to this content.