The hydroxyl radical is the primary reactive oxygen species produced by the radiolysis of water and is a significant source of radiation damage to living organisms. Mobility of the hydroxyl radical at low temperatures and/or high pressures is hence a potentially important factor in determining the challenges facing psychrophilic and/or barophilic organisms in high-radiation environments (e.g., ice-interface or undersea environments in which radiative heating is a potential heat and energy source). Here, we estimate the diffusion coefficient for the hydroxyl radical in aqueous solution using a hierarchical Bayesian model based on atomistic molecular dynamics trajectories in TIP4P/2005 water over a range of temperatures and pressures.
REFERENCES
1.
Y.
Blanco
, G.
de Diego-Castilla
, D.
Viúdez-Moreiras
, E.
Cavalcante-Silva
, J. A.
Rodríguez-Manfredi
, A. F.
Davila
, C. P.
McKay
, and V.
Parro
, “Effects of gamma and electron radiation on the structural integrity of organic molecules and macromolecular biomarkers measured by microarray immunoassays and their astrobiological implications
,” Astrobiology
18
, 1497
(2018
).2.
T. C.
Onstott
, D. P.
Moser
, S. M.
Pfiffner
, J. K.
Fredrickson
, F. J.
Brockman
, T. J.
Phelps
, D. C.
White
, A.
Peacock
, D.
Balkwill
, R.
Hoover
, L. R.
Krumholz
, M.
Borscik
, T. L.
Kieft
, and R.
Wilson
, “Indigenous and contaminant microbes in ultradeep mines
,” Environ. Microbiol.
5
, 1168
–1191
(2003
).3.
J. D.
Tarnas
, J. F.
Mustard
, B.
Sherwood Lollar
, M. S.
Bramble
, K. M.
Cannon
, A. M.
Palumbo
, and A.-C.
Plesa
, “Radiolytic H2 production on Noachian Mars: Implications for habitability and atmospheric warming
,” Earth Planet. Sci. Lett.
502
, 133
–145
(2018
).4.
L.
Ojha
, S.
Karunatillake
, S.
Karimi
, and J.
Buffo
, “Amagmatic hydrothermal systems on Mars from radiogenic heat
,” Nat. Commun.
12
, 1754
(2021
).5.
J. D.
Tarnas
, J. F.
Mustard
, B.
Sherwood Lollar
, V.
Stamenković
, K. M.
Cannon
, J.-P.
Lorand
, T. C.
Onstott
, J. R.
Michalski
, O.
Warr
, A. M.
Palumbo
, and A.-C.
Plesa
, “Earth-like habitable environments in the subsurface of Mars
,” Astrobiology
21
, 741
(2021
).6.
O.
White
, J. A.
Eisen
, J. F.
Heidelberg
, E. K.
Hickey
, J. D.
Peterson
, R. J.
Dodson
, D. H.
Haft
, M. L.
Gwinn
, W. C.
Nelson
, D. L.
Richardson
, K. S.
Moffat
, H.
Qin
, L.
Jiang
, W.
Pamphile
, M.
Crosby
, M.
Shen
, J. J.
Vamathevan
, P.
Lam
, L.
McDonald
, T.
Utterback
, C.
Zalewski
, K. S.
Makarova
, L.
Aravind
, M. J.
Daly
, K. W.
Minton
, R. D.
Fleischmann
, K. A.
Ketchum
, K. E.
Nelson
, S.
Salzberg
, H. O.
Smith
, J. C.
Venter
, and C. M.
Fraser
, “Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1
,” Science
286
, 1571
–1577
(1999
).7.
R.
Cavicchioli
, “Extremophiles and the search for extraterrestrial life
,” Astrobiology
2
, 281
–292
(2002
).8.
A. C.
Munteanu
, V.
Uivarosi
, and A.
Andries
, “Recent progress in understanding the molecular mechanisms of radioresistance in Deinococcus bacteria
,” Extremophiles
19
, 707
–719
(2015
).9.
J. A.
LaVerne
, “OH radicals and oxidizing products in the gamma radiolysis of water
,” Radiat. Res.
153
, 196
–200
(2000
).10.
M. S.
Matheson
, “The formation and detection of intermediates in water radiolysis
,” Radiat. Res., Suppl.
4
, 1
–23
(1964
).11.
D.
Ghosal
, M. V.
Omelchenko
, E. K.
Gaidamakova
, V. Y.
Matrosova
, A.
Vasilenko
, A.
Venkateswaran
, M.
Zhai
, H. M.
Kostandarithes
, H.
Brim
, K. S.
Makarova
, L. P.
Wackett
, J. K.
Fredrickson
, and M. J.
Daly
, “How radiation kills cells: Survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress
,” FEMS Microbiol. Rev.
29
, 361
–375
(2005
).12.
R.
Roots
and S.
Okada
, “Estimation of life times and diffusion distances of radicals involved in x-ray-induced DNA strand breaks or killing of mammalian cells
,” Radiat. Res.
64
, 306
–320
(1975
).13.
J.
Du
and J. M.
Gebicki
, “Proteins are major initial cell targets of hydroxyl free radicals
,” Int. J. Biochem. Cell Biol.
36
, 2334
–2343
(2004
).14.
M. J.
Davies
, S.
Fu
, and R. T.
Dean
, “Protein hydroperoxides can give rise to reactive free radicals
,” Biochem. J.
305
, 643
–649
(1995
).15.
K. J.
Barnham
, C. L.
Masters
, and A. I.
Bush
, “Neurodegenerative diseases and oxidative stress
,” Nat. Rev. Drug Discovery
3
, 205
–214
(2004
).16.
H. A.
Schwarz
, “Applications of the spur diffusion model to the radiation chemistry of aqueous solutions
,” J. Phys. Chem.
73
, 1928
–1937
(1969
).17.
M.
Huerta Parajon
, P.
Rajesh
, T.
Mu
, S. M.
Pimblott
, and J. A.
LaVerne
, “H atom yields in the radiolysis of water
,” Radiat. Phys. Chem.
77
, 1203
–1207
(2008
).18.
B. G.
Ershov
and A. V.
Gordeev
, “A model for radiolysis of water and aqueous solutions of H2, H2O2 and O2
,” Radiat. Phys. Chem.
77
, 928
–935
(2008
).19.
K. A.
Omar
, K.
Hasnaoui
, and A.
de la Lande
, “First-principles simulations of biological molecules subjected to ionizing radiation
,” Annu. Rev. Phys. Chem.
72
, 445
–465
(2021
).20.
Z.-H.
Loh
, G.
Doumy
, C.
Arnold
, L.
Kjellsson
, S. H.
Southworth
, A.
Al Haddad
, Y.
Kumagai
, M.-F.
Tu
, P. J.
Ho
, A. M.
March
, R. D.
Schaller
, M. S.
Bin Mohd Yusof
, T.
Debnath
, M.
Simon
, R.
Welsch
, L.
Inhester
, K.
Khalili
, K.
Nanda
, A. I.
Krylov
, S.
Moeller
, G.
Coslovich
, J.
Koralek
, M. P.
Minitti
, W. F.
Schlotter
, J.-E.
Rubensson
, R.
Santra
, and L.
Young
, “Observation of the fastest chemical processes in the radiolysis of water
,” Science
367
, 179
–182
(2020
).21.
I.
Jordan
, M.
Huppert
, D.
Rattenbacher
, M.
Peper
, D.
Jelovina
, C.
Perry
, A.
von Conta
, A.
Schild
, and H. J.
Wörner
, “Attosecond spectroscopy of liquid water
,” Science
369
, 974
–979
(2020
).22.
S.
Thürmer
, M.
Ončák
, N.
Ottosson
, R.
Seidel
, U.
Hergenhahn
, S. E.
Bradforth
, P.
Slavíček
, and B.
Winter
, “On the nature and origin of dicationic, charge-separated species formed in liquid water on x-ray irradiation
,” Nat. Chem.
5
, 590
–596
(2013
).23.
X.
Ren
, E.
Wang
, A. D.
Skitnevskaya
, A. B.
Trofimov
, K.
Gokhberg
, and A.
Dorn
, “Experimental evidence for ultrafast intermolecular relaxation processes in hydrated biomolecules
,” Nat. Phys.
14
, 1062
–1066
(2018
).24.
B.
Kirchner
, J.
Stubbs
, and D.
Marx
, “Fast anomalous diffusion of small hydrophobic species in water
,” Phys. Rev. Lett.
89
, 215901
(2002
).25.
S. T.
Roberts
, P. B.
Petersen
, K.
Ramasesha
, A.
Tokmakoff
, I. S.
Ufimtsev
, and T. J.
Martinez
, “Observation of a Zundel-like transition state during proton transfer in aqueous hydroxide solutions
,” Proc. Natl. Acad. Sci. U. S. A.
106
, 15154
–15159
(2009
).26.
D.
Marx
, A.
Chandra
, and M. E.
Tuckerman
, “Aqueous basic solutions: Hydroxide solvation, structural diffusion, and comparison to the hydrated proton
,” Chem. Rev.
110
, 2174
–2216
(2010
).27.
I. M.
Svishchev
and A. Y.
Plugatyr
, “Hydroxyl radical in aqueous solution: Computer simulation
,” J. Phys. Chem. B
109
, 4123
–4128
(2005
).28.
C.
Knight
and G. A.
Voth
, “The curious case of the hydrated proton
,” Acc. Chem. Res.
45
, 101
–109
(2012
).29.
M. E.
Tuckerman
, D.
Marx
, and M.
Parrinello
, “The nature and transport mechanism of hydrated hydroxide ions in aqueous solution
,” Nature
417
, 925
–9299
(2002
).30.
M.
Chen
, L.
Zheng
, B.
Santra
, H.-Y.
Ko
, R. A.
DiStasio
, Jr., M. L.
Klein
, R.
Car
, and X.
Wu
, “Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer
,” Nat. Chem.
10
, 413
–419
(2018
).31.
M.
Ceriotti
, W.
Fang
, P. G.
Kusalik
, R. H.
McKenzie
, A.
Michaelides
, M. A.
Morales
, and T. E.
Markland
, “Nuclear quantum effects in water and aqueous systems: Experiment, theory, and current challenges
,” Chem. Rev.
116
, 7529
–7550
(2016
).32.
L. M.
Dorfman
and G. E.
Adams
, Reactivity of the Hydroxyl Radical in Aqueous Solutions
(U.S. Department of Commerce, National Bureau of Standards
, Washington, DC
, 1973
).33.
R. B.
Best
, X.
Zhu
, J.
Shim
, P. E. M.
Lopes
, J.
Mittal
, M.
Feig
, and J. A. D.
Mackerell
, “Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ(1) and χ(2) dihedral angles
,” J. Chem. Theory Comput.
8
, 3257
–3273
(2012
).34.
J. L. F.
Absacal
and C.
Vega
, “A general purpose model for the condensed phases of water: TIP4P/2005
,” J. Chem. Phys.
123
, 234505
(2005
).35.
I. N.
Tsimpanogiannis
, O. A.
Moultos
, L. F.
Franco
, M. B. M.
Spera
, M.
Erdös
, and I. G.
Economou
, “Self-diffusion coefficient of bulk and confined water: A critical review of classical molecular simulation studies
,” Mol. Simul.
45
, 425
–453
(2019
).36.
A.
Pabis
, J.
Szala-Bilnik
, and D.
Swiatla-Wojcik
, “Molecular dynamics study of the hydration of the hydroxyl radical at body temperature
,” Phys. Chem. Chem. Phys.
13
, 9458
–9468
(2011
).37.
P.
Bopp
, G.
Jancsó
, and K.
Heinzinger
, “An improved potential for non-rigid water molecules in the liquid phase
,” Chem. Phys. Lett.
98
, 129
–133
(1983
).38.
M. H.
Kalos
and P. A.
Whitlock
, Monte Carlo Methods, Volume I: Basics
(John Wiley and Sons
, New York, NY
, 1986
).39.
G. J.
Martyna
, D. J.
Tobias
, and M. L.
Klein
, “Constant pressure molecular dynamics algorithms
,” J. Chem. Phys.
101
, 4177
–4189
(1994
).40.
S. E.
Feller
, Y.
Zhang
, R. W.
Pastor
, and B. R.
Brooks
, “Constant pressure molecular dynamics simulation: The Langevin piston method
,” J. Chem. Phys.
103
, 4613
–4621
(1995
).41.
J. C.
Phillips
, R.
Braun
, W.
Wang
, J.
Gumbart
, E.
Tajkhorshid
, E.
Villa
, C.
Chipot
, R. D.
Skeel
, L.
Kalé
, and K.
Schulten
, “Scalable molecular dynamics with NAMD
,” J. Comput. Chem.
26
, 1781
–1802
(2005
).42.
W.
Humphrey
, A.
Dalke
, and K.
Schulten
, “VMD: Visual molecular dynamics
,” J. Mol. Graphics
14
(33–38
), 27
–28
(1996
).43.
J. V.
Ribeiro
, B.
Radak
, J.
Stone
, J.
Gullingsrud
, J.
Saam
, and J.
Phillips
, “psfgen Plugin for VMD,” Software File (2020).44.
L.
Martínez
, R.
Andrade
, E.
Birgin
, and J. M.
Martínez
, “PACKMOL: A package for building initial configurations for molecular dynamics simulations
,” J. Comput. Chem.
30
, 2157
–2164
(2009
).45.
S.
von Bülow
, J. T.
Bullerjahn
, and G.
Hummel
, “Systematic errors in diffusion coefficients from long-time molecular dynamics simulations at constant pressure
,” J. Chem. Phys.
153
, 021101
(2020
).46.
J. T.
Bullerjahn
, S.
von Bülow
, and G.
Hummel
, “Optimal estimates of self-diffusion coefficients from molecular dynamics simulations
,” J. Chem. Phys.
153
, 024116
(2020
).47.
I.-C.
Yeh
and G.
Hummer
, “System-size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions
,” J. Phys. Chem. B
108
, 15873
(2004
).48.
M. A.
González
and J. L. F.
Abascal
, “The shear viscosity of rigid water models
,” J. Chem. Phys.
132
, 096101
(2010
).49.
S.
Du
and J. S.
Francisco
, “The OH radical-H2O molecular interaction potential
,” J. Chem. Phys.
124
, 224318
(2006
).50.
A.
Gelman
, J. B.
Carlin
, H. S.
Stern
, and D. B.
Rubin
, Bayesian Data Analysis
, 2nd ed. (Chapman and Hall
, London
, 2003
).51.
R Core Team
, R: A Language and Environment for Statistical Computing
(R Foundation for Statistical Computing
, Vienna, Austria
, 2021
).52.
J. C.
Nash
, Compact Numerical Methods for Computers. Linear Algebra and Function Minimization
(Adam Hilger
, 1990
).53.
L.
Scrucca
, M.
Fop
, T. B.
Murphy
, and A. E.
Raftery
, “mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models
,” R J.
8
, 289
–317
(2016
).54.
M. D.
Homan
and A.
Gelman
, “The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo
,” J. Mach. Learn. Res.
15
, 1593
–1623
(2014
); available at http://jmlr.org/papers/v15/hoffman14a.html.55.
Stan Development Team
, “RStan: The R Interface to Stan” (2020), R package version 2.21.2.56.
Stan Development Team
, “Stan: A C++ Library for Probability and Sampling” (2020), Software Library.57.
A.
Gelman
and D. B.
Rubin
, “Inference from iterative simulation using multiple sequences (with discussion)
,” Stat. Sci.
7
, 457
–511
(1992
).58.
G. C.
Sosso
, S.
Caravati
, G.
Rotskoff
, S.
Vaikuntanathan
, and A.
Hassanali
, “On the role of nonspherical cavities in short length-scale density fluctuations in water
,” J. Phys. Chem. A
121
, 370
–380
(2017
).59.
N.
Ansari
, R.
Dandekar
, S.
Caravati
, G. C.
Sosso
, and A.
Hassanali
, “High and low density patches in simulated liquid water
,” J. Chem. Phys.
149
, 204507
(2018
).60.
G.
Camisasca
, H.
Pathak
, K. T.
Wikfeldt
, and L. G. M.
Pettersson
, “Radial distribution functions of water: Models vs experiments
,” J. Chem. Phys.
151
, 044502
(2019
).61.
A. M.
Villa
, S. M.
Doglia
, L. D.
Gioia
, L.
Bertini
, and A.
Natalello
, “Anomalous intrinsic fluorescence of HCl and NaOH aqueous solutions
,” J. Phys. Chem. Lett.
10
, 7230
–7236
(2019
).© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.