The description of each separable contribution of the intermolecular interaction is a useful approach to develop polarizable force fields (polFFs). The Gaussian Electrostatic Model (GEM) is based on this approach, coupled with the use of density fitting techniques. In this work, we present the implementation and testing of two improvements of GEM: the Coulomb and exchange-repulsion energies are now computed with separate frozen molecular densities and a new dispersion formulation inspired by the Sum of Interactions Between Fragments Ab initio Computed polFF, which has been implemented to describe the dispersion and charge-transfer interactions. Thanks to the combination of GEM characteristics and these new features, we demonstrate a better agreement of the computed structural and condensed properties for water with experimental results, as well as binding energies in the gas phase with the ab initio reference compared with the previous GEM* potential. This work provides further improvements to GEM and the items that remain to be improved and the importance of the accurate reproduction for each separate contribution.

1.
G. A.
Cisneros
,
K. T.
Wikfeldt
,
L.
Ojamäe
,
J.
Lu
,
Y.
Xu
,
H.
Torabifard
,
A. P.
Bartók
,
G.
Csányi
,
V.
Molinero
, and
F.
Paesani
, “
Modeling molecular interactions in water: From pairwise to many-body potential energy functions
,”
Chem. Rev.
116
,
7501
7528
(
2016
).
2.
P.
Ren
and
J. W.
Ponder
, “
Polarizable atomic multipole water model for molecular mechanics simulation
,”
J. Phys. Chem. B
107
,
5933
5947
(
2003
).
3.
C.
Liu
,
J.-P.
Piquemal
, and
P.
Ren
, “
AMOEBA+ classical potential for modeling molecular interactions
,”
J. Chem. Theory Comput.
15
,
4122
4139
(
2019
).
4.
N.
Gresh
,
G. A.
Cisneros
,
T. A.
Darden
, and
J.-P.
Piquemal
, “
Anisotropic, polarizable molecular mechanics studies of inter- and intramolecular interactions and ligand−macromolecule complexes. A bottom-up strategy
,”
J. Chem. Theory Comput.
3
,
1960
1986
(
2007
).
5.
P. N.
Day
,
J. H.
Jensen
,
M. S.
Gordon
,
S. P.
Webb
,
W. J.
Stevens
,
M.
Krauss
,
D.
Garmer
,
H.
Basch
, and
D.
Cohen
, “
An effective fragment method for modeling solvent effects in quantum mechanical calculations
,”
J. Chem. Phys.
105
,
1968
1986
(
1996
).
6.
W.
Xie
and
J.
Gao
, “
Design of a next generation force field: The X-POL potential
,”
J. Chem. Theory Comput.
3
,
1890
1900
(
2007
).
7.
W.
Xie
,
M.
Orozco
,
D. G.
Truhlar
, and
J.
Gao
, “
X-Pol potential: An electronic structure-based force field for molecular dynamics simulation of a solvated protein in water
,”
J. Chem. Theory Comput.
5
,
459
467
(
2009
).
8.
J. M.
Hermida-Ramón
,
S.
Brdarski
,
G.
Karlström
, and
U.
Berg
, “
Inter- and intramolecular potential for the N-formylglycinamide-water system. A comparison between theoretical modeling and empirical force fields
,”
J. Comput. Chem.
24
,
161
176
(
2003
).
9.
J. A.
Rackers
,
R. R.
Silva
,
Z.
Wang
, and
J. W.
Ponder
, “
Polarizable water potential derived from a model electron density
,”
J. Chem. Theory Comput.
(published online 2021) arXiv:2106.13116 [physics.chem-ph].
10.
K.
Kitaura
and
K.
Morokuma
, “
A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation
,”
Int. J. Quantum Chem.
10
,
325
340
(
1976
).
11.
W. J.
Stevens
and
W. H.
Fink
, “
Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer
,”
Chem. Phys. Lett.
139
,
15
22
(
1987
).
12.
P. S.
Bagus
,
K.
Hermann
, and
C. W.
Bauschlicher
, “
A new analysis of charge transfer and polarization for ligand–metal bonding: Model studies of Al4CO and Al4NH3
,”
J. Chem. Phys.
80
,
4378
4386
(
1984
).
13.
B.
Jeziorski
,
R.
Moszynski
, and
K.
Szalewicz
, “
Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes
,”
Chem. Rev.
94
,
1887
1930
(
1994
).
14.
T. M.
Parker
,
L. A.
Burns
,
R. M.
Parrish
,
A. G.
Ryno
, and
C. D.
Sherrill
, “
Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies
,”
J. Chem. Phys.
140
,
094106
(
2014
).
15.
A.
Heßelmann
and
G.
Jansen
, “
First-order intermolecular interaction energies from Kohn–Sham orbitals
,”
Chem. Phys. Lett.
357
,
464
470
(
2002
).
16.
A.
Heßelmann
and
G.
Jansen
, “
Intermolecular induction and exchange-induction energies from coupled-perturbed Kohn–Sham density functional theory
,”
Chem. Phys. Lett.
362
,
319
325
(
2002
).
17.
A.
Heßelmann
and
G.
Jansen
, “
Intermolecular dispersion energies from time-dependent density functional theory
,”
Chem. Phys. Lett.
367
,
778
784
(
2003
).
18.
A. J.
Misquitta
and
K.
Szalewicz
, “
Intermolecular forces from asymptotically corrected density functional description of monomers
,”
Chem. Phys. Lett.
357
,
301
306
(
2002
).
19.
A. J.
Misquitta
,
B.
Jeziorski
, and
K.
Szalewicz
, “
Dispersion energy from density-functional theory description of monomers
,”
Phys. Rev. Lett.
91
,
033201
(
2003
).
20.
A. J.
Misquitta
,
R.
Podeszwa
,
B.
Jeziorski
, and
K.
Szalewicz
, “
Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations
,”
J. Chem. Phys.
123
,
214103
(
2005
).
21.
A. J.
Misquitta
, “
Charge-transfer from regularized symmetry-adapted perturbation theory
,”
J. Chem. Theory Comput.
9
,
5313
5326
(
2013
).
22.
G. A.
Cisneros
,
J. P.
Piquemal
, and
T. A.
Darden
, “
Intermolecular electrostatic energies using density fitting
,”
J. Chem. Phys.
123
,
044109
(
2005
).
23.
S.
Boys
and
I.
Shavit
, “
A fundamental calculation of the energy surface for the system of three hydrogen atoms
,” NTIS, Springfield, VA, AD212985,
1959
.
24.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
, “
On first-row diatomic molecules and local density models
,”
J. Chem. Phys.
71
,
4993
4999
(
1979
).
25.
A. M.
Köster
,
P.
Calaminici
,
Z.
Gómez
, and
U.
Reveles
, “
Density functional theory calculation of transition metal clusters
,” in
Reviews of Modern Quantum Chemistry
(
World Scientific
,
2002
), pp.
1439
1475
.
26.
G. A.
Cisneros
,
D.
Elking
,
J.-P.
Piquemal
, and
T. A.
Darden
, “
Numerical fitting of molecular properties to Hermite Gaussians
,”
J. Phys. Chem. A
111
,
12049
12056
(
2007
).
27.
H.
Gökcan
,
E.
Kratz
,
T. A.
Darden
,
J.-P.
Piquemal
, and
G. A.
Cisneros
, “
QM/MM simulations with the Gaussian electrostatic model: A density-based polarizable potential
,”
J. Phys. Chem. Lett.
9
,
3062
3067
(
2018
).
28.
J.
Nochebuena
,
S.
Naseem-Khan
, and
G. A.
Cisneros
, “
Development and application of quantum mechanics/molecular mechanics methods with advanced polarizable potentials
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1515
(
2021
).
29.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
30.
D.
York
and
W.
Yang
, “
The fast Fourier Poisson method for calculating Ewald sums
,”
J. Chem. Phys.
101
,
3298
3300
(
1994
).
31.
R. E.
Duke
and
G. A.
Cisneros
, “
Ewald-based methods for Gaussian integral evaluation: Application to a new parameterization of GEM*
,”
J. Mol. Model.
25
,
307
(
2019
).
32.
G. A.
Cisneros
,
J.-P.
Piquemal
, and
T. A.
Darden
, “
Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods
,”
J. Chem. Phys.
125
,
184101
(
2006
).
33.
S.
Naseem-Khan
,
N.
Gresh
,
A. J.
Misquitta
, and
J.-P.
Piquemal
, “
An assessment of SAPT and supermolecular EDAs approaches for the development of separable and polarizable force fields
,”
J. Chem. Theory Comput.
17
,
2759
2774
(
2021
); arXiv:2008.01436.
34.
S. P.
Veccham
,
J.
Lee
,
Y.
Mao
,
P. R.
Horn
, and
M.
Head-Gordon
, “
A non-perturbative pairwise-additive analysis of charge transfer contributions to intermolecular interaction energies
,”
Phys. Chem. Chem. Phys.
23
,
928
943
(
2021
); arXiv:2011.04918.
35.
S.
Naseem-Khan
,
L.
Lagardère
,
G. A.
Cisneros
,
P.
Ren
,
N.
Gresh
, and
J.-P.
Piquemal
, “
Molecular dynamics with the SIBFA many-body polarizable force field: From symmetry adapted perturbation theory to condensed phase properties
” (to be published).
36.
L.
Lagardère
,
L.-H.
Jolly
,
F.
Lipparini
,
F.
Aviat
,
B.
Stamm
,
Z. F.
Jing
,
M.
Harger
,
H.
Torabifard
,
G. A.
Cisneros
,
M. J.
Schnieders
,
N.
Gresh
,
Y.
Maday
,
P. Y.
Ren
,
J. W.
Ponder
, and
J.-P.
Piquemal
, “
Tinker-HP: A massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields
,”
Chem. Sci.
9
,
956
972
(
2018
).
37.
R. E.
Duke
,
O. N.
Starovoytov
,
J.-P.
Piquemal
,
G. A.
Cisneros
, and
A.
Cisneros
, “
GEM*: A molecular electronic density-based force field for molecular dynamics simulations
,”
J. Chem. Theory Comput.
10
,
1361
1365
(
2014
).
38.
J.-P.
Piquemal
and
G. A.
Cisneros
,
Many-Body Effects and Electrostatics in Biomolecules
(
Pan Standford Publishing
,
2015
), Vol. 7, pp.
978
981
.
39.
V.
Babin
,
G. R.
Medders
, and
F.
Paesani
, “
Toward a universal water model: First principles simulations from the dimer to the liquid phase
,”
J. Phys. Chem. Lett.
3
,
3765
3769
(
2012
); arXiv:1210.7022.
40.
V.
Babin
,
C.
Leforestier
, and
F.
Paesani
, “
Development of a ‘first principles’ water potential with flexible monomers: Dimer potential energy surface, VRT spectrum, and second virial coefficient
,”
J. Chem. Theory Comput.
9
,
5395
5403
(
2013
).
41.
B. J.
Smith
,
D. J.
Swanton
,
J. A.
Pople
,
H. F.
Schaefer
, and
L.
Radom
, “
Transition structures for the interchange of hydrogen atoms within the water dimer
,”
J. Chem. Phys.
92
,
1240
1247
(
1990
).
42.
G. A.
Cisneros
, “
Application of Gaussian electrostatic model (GEM) distributed multipoles in the AMOEBA force field
,”
J. Chem. Theory Comput.
8
,
5072
5080
(
2012
).
43.
H.
Torabifard
,
O. N.
Starovoytov
,
P.
Ren
, and
G. A.
Cisneros
, “
Development of an AMOEBA water model using GEM distributed multipoles
,”
Theor. Chem. Acc.
134
,
101
(
2015
).
44.
J.-P.
Piquemal
,
G. A.
Cisneros
,
P.
Reinhardt
,
N.
Gresh
, and
T. A.
Darden
, “
Towards a force field based on density fitting
,”
J. Chem. Phys.
124
,
104101
(
2006
).
45.
B.
Temelso
,
K. A.
Archer
, and
G. C.
Shields
, “
Benchmark structures and binding energies of small water clusters with anharmonicity corrections
,”
J. Phys. Chem. A
115
,
12034
12046
(
2011
).
46.
A. K.
Soper
and
M. G.
Phillips
, “
A new determination of the structure of water at 25 °C
,”
Chem. Phys.
107
,
47
60
(
1986
).
47.
A. K.
Soper
, “
The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa
,”
Chem. Phys.
258
,
121
137
(
2000
).
48.
L. B.
Skinner
,
C.
Huang
,
D.
Schlesinger
,
L. G.
Pettersson
,
A.
Nilsson
, and
C. J.
Benmore
, “
Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range
,”
J. Chem. Phys.
138
,
074506
(
2013
).
49.
W.
Wagner
and
A.
Pruß
, “
The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use
,”
J. Phys. Chem. Ref. Data
31
,
387
535
(
2002
).
50.
S. K.
Reddy
,
S. C.
Straight
,
P.
Bajaj
,
C.
Huy Pham
,
M.
Riera
,
D. R.
Moberg
,
M. A.
Morales
,
C.
Knight
,
A. W.
Götz
, and
F.
Paesani
, “
On the accuracy of the MB-pol many-body potential for water: Interaction energies, vibrational frequencies, and classical thermodynamic and dynamical properties from clusters to liquid water and ice
,”
J. Chem. Phys.
145
,
194504
(
2016
); arXiv:1609.02884.
51.
G. S.
Fanourgakis
,
G. K.
Schenter
, and
S. S.
Xantheas
, “
A quantitative account of quantum effects in liquid water
,”
J. Chem. Phys.
125
,
141102
(
2006
).
52.
F.
Paesani
,
S.
Iuchi
, and
G. A.
Voth
, “
Quantum effects in liquid water from an ab initio-based polarizable force field
,”
J. Chem. Phys.
127
,
074506
(
2007
).

Supplementary Material

You do not currently have access to this content.