We numerically investigate the mean exit time of an inertial active Brownian particle from a circular cavity with single or multiple exit windows. Our simulation results witness distinct escape mechanisms depending on the relative amplitudes of the thermal length and self-propulsion length compared to the cavity and pore sizes. For exceedingly large self-propulsion lengths, overdamped active particles diffuse on the cavity surface, and rotational dynamics solely governs the exit process. On the other hand, the escape kinetics of a very weakly damped active particle is largely dictated by bouncing effects on the cavity walls irrespective of the amplitude of self-propulsion persistence lengths. We show that the exit rate can be maximized for an optimal self-propulsion persistence length, which depends on the damping strength, self-propulsion velocity, and cavity size. However, the optimal persistence length is insensitive to the opening windows’ size, number, and arrangement. Numerical results have been interpreted analytically based on qualitative arguments. The present analysis aims at understanding the transport controlling mechanism of active matter in confined structures.

1.
N. A.
Licata
,
B.
Mohari
,
C.
Fuqua
, and
S.
Setayeshgar
, “
Diffusion of bacterial cells in porous media
,”
Biophys. J.
110
,
247
(
2016
).
2.
F.
Schweitzer
,
Brownian Agents and Active Particles
(
Springer
,
Berlin
,
2003
);
P.
Romanczuk
,
M.
Bär
,
W.
Ebeling
,
B.
Lindner
, and
L.
Schimansky-Geier
, “
Active Brownian particles. From individual to collective stochastic dynamics
,”
Eur. Phys. J.: Spec. Top.
202
,
1
(
2012
).
3.
M. C.
Marchetti
,
J. F.
Joanny
,
S.
Ramaswamy
,
T. B.
Liverpool
,
J.
Prost
,
M.
Rao
, and
R. A.
Simha
, “
Hydrodynamics of soft active matter
,”
Rev. Mod. Phys.
85
,
1143
(
2013
).
4.
C.
Bechinger
,
R. D.
Leonardo
,
H.
Löwen
,
C.
Reichhardt
,
G.
Volpe
, and
G.
Volpe
, “
Active particles in complex and crowded environments
,”
Rev. Mod. Phys.
88
,
045006
(
2016
).
5.
Janus Particle Synthesis, Self-Assembly and Applications
, edited by
S.
Jiang
and
S.
Granick
(
RSC Publishing
,
Cambridge
,
2012
).
6.
A.
Walther
and
A. H. E.
Müller
, “
Janus particles: Synthesis, self-assembly, physical properties, and applications
,”
Chem. Rev.
113
,
5194
(
2013
).
7.
J. R.
Howse
,
R. A.
Jones
,
A. J.
Ryan
,
T.
Gough
,
R.
Vafabakhsh
, and
R.
Golestanian
, “
Self-motile colloidal particles: From directed propulsion to random walk
,”
Phys. Rev. Lett.
99
,
048102
(
2007
).
8.
R.
Golestanian
, “
Anomalous diffusion of symmetric and asymmetric active colloids
,”
Phys. Rev. Lett.
102
,
188305
(
2009
).
9.
G.
Volpe
,
I.
Buttinoni
,
D.
Vogt
,
H.-J.
Kümmerer
, and
C.
Bechinger
, “
Microswimmers in patterned environments
,”
Soft Matter
7
,
8810
8815
(
2011
).
10.
P. K.
Ghosh
,
V. R.
Misko
,
F.
Marchesoni
, and
F.
Nori
, “
Self-propelled Janus particles in a ratchet: Numerical simulations
,”
Phys. Rev. Lett.
110
,
268301
(
2013
).
11.
A. M.
Pourrahimi
and
M.
Pumera
, “
Multifunctional and self-propelled spherical Janus nano/micromotors: Recent advances
,”
Nanoscale
10
,
16398
(
2018
).
12.
X.
Ao
,
P. K.
Ghosh
,
Y.
Li
,
G.
Schmid
,
P.
Hänggi
, and
F.
Marchesoni
, “
Active Brownian motion in a narrow channel
,”
Eur. Phys. J.: Spec. Top.
223
,
3227
(
2014
).
13.
P. K.
Ghosh
,
P.
Hänggi
,
F.
Marchesoni
, and
F.
Nori
, “
Giant negative mobility of Janus particles in a corrugated channel
,”
Phys. Rev. E
89
,
062115
(
2014
).
14.
X.
Wang
,
L.
Baraban
,
A.
Nguyen
,
J.
Ge
,
V. R.
Misko
,
J.
Tempere
,
F.
Nori
,
P.
Formanek
,
T.
Huang
,
G.
Cuniberti
,
J.
Fassbender
, and
D.
Makarov
, “
High-motility visible light-driven Ag/AgCl Janus micromotors
,”
Small
14
,
1803613
(
2018
).
15.
Y.
Fily
and
M. C.
Marchetti
, “
Athermal phase separation of self-propelled particles with no alignment
,”
Phys. Rev. Lett.
108
,
235702
(
2012
).
16.
X.
Yang
,
M. L.
Manning
, and
M. C.
Marchetti
, “
Aggregation and segregation of confined active particles
,”
Soft Matter
10
,
6477
(
2014
).
17.
G. S.
Redner
,
M. F.
Hagan
, and
A.
Baskaran
, “
Structure and dynamics of a phase-separating active colloidal fluid
,”
Phys. Rev. Lett.
110
,
055701
(
2013
).
18.
I.
Buttinoni
,
J.
Bialké
,
F.
Kümmel
,
H.
Löwen
,
C.
Bechinger
, and
T.
Speck
, “
Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles
,”
Phys. Rev. Lett.
110
,
238301
(
2013
).
19.
J.
Elgeti
,
R. G.
Winkler
, and
G.
Gompper
, “
Physics of microswimmers-single particle motion and collective behavior: A review
,”
Rep. Prog. Phys.
78
,
056601
(
2015
).
20.
A.
Zöttl
and
H.
Stark
, “
Emergent behavior in active colloids
,”
J. Phys.: Condens. Matter
28
,
253001
(
2016
).
21.
M. E.
Cates
and
J.
Tailleur
, “
Motility-induced phase separation
,”
Annu. Rev. Condens. Matter Phys.
6
,
219
(
2015
).
22.
T.
Huang
,
V. R.
Misko
,
S.
Gobeil
,
X.
Wang
,
F.
Nori
,
J.
Schütt
,
J.
Fassbender
,
G.
Cuniberti
,
D.
Makarov
, and
L.
Baraban
, “
Inverse solidification induced by active Janus particles
,”
Adv. Funct. Mater.
30
,
2003851
(
2020
).
23.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
, “
Reaction-rate theory: Fifty years after Kramers
,”
Rev. Mod. Phys.
62
,
251
(
1990
).
24.
P.
Hänggi
,
T. J.
Mroczkowski
,
F.
Moss
, and
P. V. E.
McClintock
, “
Bistability driven by colored noise: Theory and experiment
,”
Phys. Rev. A
32
,
695
(
1985
).
25.
J. R.
Chaudhuri
,
S. K.
Banik
,
B. C.
Bag
, and
D. S.
Ray
, “
Analytical and numerical investigation of escape rate for a noise driven bath
,”
Phys. Rev. E
63
,
061111
(
2001
).
26.
D.
Banerjee
,
S. K.
Banik
,
B. C.
Bag
, and
D. S.
Ray
, “
Quantum Kramers equation for energy diffusion and barrier crossing dynamics in the low-friction regime
,”
Phys. Rev. E
66
,
051105
(
2002
).
27.
J. R.
Chaudhuri
,
G.
Gangopadhyay
, and
D. S.
Ray
, “
Theory of nonstationary activated rate processes: Nonexponential kinetics
,”
J. Chem. Phys.
109
,
5565
(
1998
).
28.
S.
Chaudhury
,
D.
Singh
, and
A. B.
Kolomeisky
, “
Theoretical investigations of the dynamics of chemical reactions on nanocatalysts with multiple active sites
,”
J. Phys. Chem. Lett.
11
,
2330
(
2020
).
29.
D.
Mondal
,
P. K.
Ghosh
, and
D. S.
Ray
, “
Noise-induced transport in a rough ratchet potential
,”
J. Chem. Phys.
130
,
074703
(
2009
).
30.
R.
Zwanzig
, “
Diffusion past an entropy barrier
,”
J. Phys. Chem.
96
,
3926
(
1992
).
31.
D.
Holcman
and
Z.
Schuss
,
Stochastic Narrow Escape in Molecular and Cellular Biology
(
Springer
,
New York
,
2015
).
32.
P.
Hänggi
and
F.
Marchesoni
, “
Artificial Brownian motors: Controlling transport on the nanoscale
,”
Rev. Mod. Phys.
81
,
387
(
2009
).
33.
P. S.
Burada
,
P.
Hänggi
,
F.
Marchesoni
,
G.
Schmid
, and
P.
Talkner
, “
Diffusion in confined geometries
,”
ChemPhysChem
10
,
45
(
2009
).
34.
L.
Bosi
,
P. K.
Ghosh
, and
F.
Marchesoni
, “
Analytical estimates of free Brownian diffusion times in corrugated narrow channels
,”
J. Chem. Phys.
137
,
174110
(
2012
).
35.
P. S.
Burada
,
G.
Schmid
,
D.
Reguera
,
M. H.
Vainstein
,
J. M.
Rubi
, and
P.
Hänggi
, “
Entropic stochastic resonance
,”
Phys. Rev. Lett.
101
,
130602
(
2008
).
36.
D.
Mondal
,
M.
Das
, and
D. S.
Ray
, “
Entropic resonant activation
,”
J. Chem. Phys.
132
,
224102
(
2010
).
37.
P. K.
Ghosh
,
F.
Marchesoni
,
S. E.
Savel’ev
, and
F.
Nori
, “
Geometric stochastic resonance
,”
Phys. Rev. Lett.
104
,
020601
(
2010
).
38.
S.
Martens
,
G.
Schmid
,
L.
Schimansky-Geier
, and
P.
Hänggi
, “
Biased Brownian motion in extreme corrugated tubes
,”
Chaos
21
,
047518
(
2011
).
39.
P. K.
Ghosh
,
R.
Glavey
,
F.
Marchesoni
,
S. E.
Savel’ev
, and
F.
Nori
, “
Geometric stochastic resonance in a double cavity
,”
Phys. Rev. E
84
,
011109
(
2011
).
40.
L.
Kullman
,
M.
Winterhalter
, and
S. M.
Bezrukov
, “
Transport of maltodextrins through maltoporin: A single-channel study
,”
Biophys. J.
82
,
803
(
2002
).
41.
D.
Mondal
and
D. S.
Ray
, “
Diffusion over an entropic barrier: Non-Arrhenius behavior
,”
Phys. Rev. E
82
,
032103
(
2010
).
42.
D.
Mondal
,
M.
Das
, and
D. S.
Ray
, “
Entropic dynamical hysteresis in a driven system
,”
Phys. Rev. E
85
,
031128
(
2012
).
43.
P. K.
Ghosh
, “
Communication: Escape kinetics of self-propelled Janus particles from a cavity: Numerical simulations
,”
J. Chem. Phys.
141
,
061102
(
2014
).
44.
S.
Martens
,
I. M.
Sokolov
, and
L.
Schimansky-Geier
, “
Communication: Impact of inertia on biased Brownian transport in confined geometries
,”
J. Chem. Phys.
136
,
111102
(
2012
).
45.
P. K.
Ghosh
,
P.
Hänggi
,
F.
Marchesoni
,
F.
Nori
, and
G.
Schmid
, “
Brownian transport in corrugated channels with inertia
,”
Phys. Rev. E
86
,
021112
(
2012
).
46.
S.
Nayak
,
T.
Debnath
,
S.
Das
,
D.
Debnath
, and
P. K.
Ghosh
, “
Escape kinetics of an underdamped colloidal particle from a cavity through narrow pores
,”
J. Phys. Chem. C
124
,
18747
(
2020
).
47.
A.
Geiseler
,
P.
Hänggi
, and
G.
Schmid
, “
Kramers escape of a self-propelled particle
,”
Eur. Phys. J. B
89
,
175
(
2016
).
48.
A.
Scacchi
and
A.
Sharma
, “
Mean first passage time of active Brownian particle in one dimension
,”
Mol. Phys.
116
,
460
(
2017
).
49.
T.
Debnath
and
P. K.
Ghosh
, “
Activated barrier crossing dynamics of a Janus particle carrying cargo
,”
Phys. Chem. Chem. Phys.
20
,
25069
(
2018
).
50.
A.
Biswas
,
J. M.
Cruz
,
P.
Parmananda
, and
D.
Das
, “
First passage of an active particle in the presence of passive crowders
,”
Soft Matter
16
,
6138
(
2020
).
51.
A.
Scacchi
,
J. M.
Brader
, and
A.
Sharma
, “
Escape rate of transiently active Brownian particle in one dimension
,”
Phys. Rev. E
100
,
012601
(
2019
).
52.
A.
Militaru
,
M.
Innerbichler
,
M.
Frimmer
,
F.
Tebbenjohanns
,
L.
Novotny
, and
C.
Dellago
, “
Escape dynamics of active particles in multistable potentials
,”
Nat. Commun.
12
,
2446
(
2021
).
53.
E.
Woillez
,
Y.
Zhao
,
Y.
Kafri
,
V.
Lecomte
, and
J.
Tailleur
, “
Activated escape of a self-propelled particle from a metastable state
,”
Phys. Rev. Lett.
122
,
258001
(
2019
).
54.
L.
Caprini
,
U. M. B.
Marconi
,
A.
Puglisi
, and
A.
Vulpiani
, “
Active escape dynamics: The effect of persistence on barrier crossing
,”
J. Chem. Phys.
150
,
024902
(
2019
).
55.
E.
Woillez
,
Y.
Kafri
, and
V.
Lecomte
, “
Nonlocal stationary probability distributions and escape rates for an active Ornstein–Uhlenbeck particle
,”
J. Stat. Mech.: Theory Exp.
2020
,
063204
.
56.
J. F.
Rupprecht
,
O.
Bénichou
, and
R.
Voituriez
, “
Optimal search strategies of run-and-tumble walks
,”
Phys. Rev. E
94
,
012117
(
2016
).
57.
M.
Paoluzzi
,
L.
Angelani
, and
A.
Puglisi
, “
Narrow-escape time and sorting of active particles in circular domains
,”
Phys. Rev. E
102
,
042617
(
2020
).
58.
K.
Stølevik Olsen
,
L.
Angheluta
, and
E. G.
Flekkøy
, “
Escape problem for active particles confined to a disk
,”
Phys. Rev. Res.
2
,
043314
(
2020
).
59.
L.
Caprini
,
F.
Cecconi
, and
U. M. B.
Marconi
, “
Transport of active particles in an open wedge channel
,”
J. Chem. Phys.
150
,
144903
(
2019
).
60.
C.
Scholz
,
S.
Jahanshahi
,
A.
Ldov
, and
H.
Löwen
, “
Inertial delay of self-propelled particles
,”
Nat. Commun.
9
,
5156
(
2018
).
61.
H.
Löwen
, “
Inertial effects of self-propelled particles: From active Brownian to active Langevin motion
,”
J. Chem. Phys.
152
,
040901
(
2020
).
62.
D.
Debnath
,
P. K.
Ghosh
,
V. R.
Misko
,
Y.
Li
,
F.
Marchesoni
, and
F.
Nori
, “
Enhanced motility in a binary mixture of active nano/microswimmers
,”
Nanoscale
12
,
9717
(
2020
).
63.
L.
Caprini
and
U. M. B.
Marconi
, “
Active particles under confinement and effective force generation among surfaces
,”
Soft Matter
14
,
9044
9054
(
2018
).
64.
S.
Das
,
G.
Gompper
, and
R. G.
Winkler
, “
Confined active Brownian particles: Theoretical description of propulsion-induced accumulation
,”
New J. Phys.
20
,
015001
(
2018
).
65.
Y.
Fily
,
A.
Baskaran
, and
M. F.
Hagan
, “
Dynamics of self-propelled particles under strong confinement
,”
Soft Matter
10
,
5609
5617
(
2014
).
66.
P. E.
Kloeden
and
E.
Platen
,
Numerical Solution of Stochastic Differential Equations
(
Springer
,
1992
).
67.
C. R.
Doering
and
J. C.
Gadoua
, “
Resonant activation over a fluctuating barrier
,”
Phys. Rev. Lett.
69
,
2318
(
1992
).
68.
See Eq. (5.2.158) of
C.
Gardiner
,
Stochastic Methods: A Handbook for the Natural and Social Sciences
(
Springer
,
Berlin
,
2009
).
You do not currently have access to this content.