We report the effect of confinement on the dynamics of three monohydroxy alcohols (1-propanol, 2-ethyl-1-hexanol, and 4-methyl-3-heptanol) differing in their chemical structure and, consequently, in the dielectric strength of the “Debye” process. Density functional theory calculations in bulk 1-propanol identified both linear and ring-like associations composed of up to five repeat units. The simulation results revealed that the ring structures, with a low dipole moment (∼2 D), are energetically preferred over the linear assemblies with a dipole moment of 2.18 D per repeat unit. Under confinement in nanoporous alumina (in templates with pore diameters ranging from 400 to 20 nm), all dynamic processes were found to speed up irrespective of the molecular architecture. The characteristic freezing temperatures of the α and the Debye-like processes followed the pore size dependence: Ta,D=Ta,DbulkA/d1/2, where d is the pore diameter. The characteristic “freezing” temperatures for the Debye-like (the slow process for confined 1-propanol is non-Debye) and the α-processes decrease, respectively, by 6.5 and 13 K in confined 1-propanol, by 9.5 and 19 K in confined 2-ethyl-1-hexanol, and by 9 and 23 K in confined 4-methyl-3-heptanol within the same 25 nm pores. In 2-ethyl-1-hexanol, confinement reduced the number of linearly associated repeats from approximately heptamers in the bulk to dimers within 25 pores. In addition, the slower process in bulk 2-ethyl-1-hexanol and 4-methyl-3-heptanol, where the signal is dominated by ring-like supramolecular assemblies, is clearly non-Debye. The results suggest that the effect of confinement is dominant in the latter assemblies.

1.
R.
Böhmer
,
C.
Gainaru
, and
R.
Richert
,
Phys. Rep.
545
,
125
195
(
2014
).
2.
O.
Mishima
and
H. E.
Stanley
,
Nature
396
,
329
335
(
1998
).
3.
A.
Ananiadou
,
G.
Papamokos
,
M.
Steinhart
, and
G.
Floudas
,
J. Phys. Chem. B
124
,
10850
10857
(
2020
).
4.
G. P.
Johari
and
M.
Goldstein
,
J. Chem. Phys.
53
,
2372
(
1970
).
5.
P.
Debye
,
Polar Molecules
(
Chemical Catalog Company
,
New York
,
1929
).
6.
F. X.
Hassion
and
R. H.
Cole
,
Nature
172
,
212
(
1953
).
7.
F. X.
Hassion
and
R. H.
Cole
,
J. Chem. Phys.
23
,
1756
(
1955
).
8.
C.
Gainaru
,
R.
Meier
,
S.
Schildmann
,
C.
Lederle
,
W.
Hiller
,
E. A.
Rössler
, and
R.
Böhmer
,
Phys. Rev. Lett.
105
,
258303
(
2010
).
9.
C.
Hansen
,
F.
Stickel
,
T.
Berger
,
R.
Richert
, and
E. W.
Fischer
,
J. Chem. Phys.
107
,
1086
(
1997
).
10.
J. P.
Gabriel
,
F.
Pabst
, and
T.
Blochowicz
,
J. Phys. Chem. B
121
,
8847
8853
(
2017
).
11.
S.
Bauer
,
K.
Burlafinger
,
C.
Gainaru
,
P.
Lunkenheimer
,
W.
Hiller
,
A.
Loidl
, and
R.
Böhmer
,
J. Chem. Phys.
138
,
094505
(
2013
).
12.
H.
Huth
,
L.-M.
Wang
,
C.
Schick
, and
R.
Richert
,
J. Chem. Phys.
126
,
104503
(
2007
).
13.
T.
Böhmer
,
J. P.
Gabriel
,
T.
Richter
,
F.
Pabst
, and
T.
Blochowicz
,
J. Phys. Chem. B
123
,
10959
10966
(
2019
).
14.
P.
Weigl
,
D.
Koestel
,
F.
Pabst
,
J. P.
Gabriel
,
T.
Walther
, and
T.
Blochowicz
,
Phys. Chem. Chem. Phys.
21
,
24778
24786
(
2019
).
15.
M.
Požar
,
J.
Bolle
,
C.
Sternemann
, and
A.
Perera
,
J. Phys. Chem. B
124
,
8358
8371
(
2020
).
16.
K. L.
Ngai
,
S.
Pawlus
, and
M.
Paluch
,
Chem. Phys.
530
,
110617
(
2020
).
17.
M.
Wikarek
,
S.
Pawlus
,
S. N.
Tripathy
,
A.
Szulc
, and
M.
Paluch
,
J. Phys. Chem. B
120
,
5744
5752
(
2016
).
18.
P.
Sillrén
,
A.
Matic
,
M.
Karlsson
,
M.
Koza
,
M.
Maccarini
,
P.
Fouquet
,
M.
Götz
,
Th.
Bauer
,
R.
Gulich
,
P.
Lunkenheimer
,
A.
Loidl
,
J.
Mattsson
,
C.
Gainaru
,
E.
Vynokur
,
S.
Schildmann
,
S.
Bauer
, and
R.
Böhmer
,
J. Chem. Phys.
140
,
124501
(
2014
).
19.
S.
Bauer
,
H.
Wittkamp
,
S.
Schildmann
,
M.
Frey
,
W.
Hiller
,
T.
Hecksher
,
N. B.
Olsen
,
C.
Gainaru
, and
R.
Böhmer
,
J. Chem. Phys.
139
,
134503
(
2013
).
20.
L. P.
Singh
and
R.
Richert
,
Phys. Rev. Lett.
109
,
167802
(
2012
).
21.
C.
Gainaru
,
M.
Wikarek
,
S.
Pawlus
,
M.
Paluch
,
R.
Figuli
,
M.
Wilhelm
,
T.
Hecksher
,
B.
Jakobsen
,
J. C.
Dyre
, and
R.
Böhmer
,
Colloid Polym. Sci.
292
,
1913
1921
(
2014
).
22.
L. P.
Singh
,
C.
Alba-Simionesco
, and
R.
Richert
,
J. Chem. Phys.
139
,
144503
(
2013
).
23.
F.
Pabst
,
J. P.
Gabriel
,
T.
Böhmer
,
P.
Weigl
,
A.
Helbling
,
T.
Richter
,
P.
Zourchang
,
T.
Walther
, and
T.
Blochowicz
,
J. Phys. Chem. Lett.
12
,
3685
3690
(
2021
).
24.
C.
Gainaru
,
R.
Figuli
,
T.
Hecksher
,
B.
Jakobsen
,
J. C.
Dyre
,
M.
Wilhelm
, and
R.
Böhmer
,
Phys. Rev. Lett.
112
,
098301
(
2014
).
25.
T.
Hecksher
and
B.
Jakobsen
,
J. Chem. Phys.
141
,
101104
(
2014
).
26.
S.
Schildmann
,
A.
Reiser
,
R.
Gainaru
,
C.
Gainaru
, and
R.
Böhmer
,
J. Chem. Phys.
135
,
174511
(
2011
).
27.
C.
Gainaru
,
S.
Kastner
,
F.
Mayr
,
P.
Lunkenheimer
,
S.
Schildmann
,
H. J.
Weber
,
W.
Hiller
,
A.
Loidl
, and
R.
Böhmer
,
Phys. Rev. Lett.
107
,
118304
(
2011
).
28.
S. P.
Bierwirth
,
T.
Büning
,
C.
Gainaru
,
C.
Sternemann
,
M.
Tolan
, and
R.
Böhmer
,
Phys. Rev. E
90
,
052807
(
2014
).
29.
D.
Fragiadakis
,
C. M.
Roland
, and
R.
Casalini
,
J. Chem. Phys.
132
,
144505
(
2010
).
30.
A.
Reiser
,
G.
Kasper
,
C.
Gainaru
, and
R.
Böhmer
,
J. Chem. Phys.
132
,
181101
(
2010
).
31.
S.
Pawlus
,
M.
Wikarek
,
C.
Gainaru
,
M.
Paluch
, and
R.
Böhmer
,
J. Chem. Phys.
139
,
064501
(
2013
).
32.
H.
Jansson
and
J.
Swenson
,
J. Chem. Phys.
134
,
104504
(
2011
).
33.
C.
Gainaru
,
S.
Schildmann
, and
R.
Böhmer
,
J. Chem. Phys.
135
,
174510
(
2011
).
34.
W. K.
Kinupsu
,
M.
Elsayed
,
W.
Kossack
,
S.
Pawlus
,
K.
Adrjanowicz
,
M.
Tress
,
E. U.
Mapesa
,
R.
Krause-Rehberg
,
K.
Kaminski
, and
F.
Kremer
,
J. Phys. Chem. Lett.
6
,
3708
3712
(
2015
).
35.
A.
Talik
,
M.
Tarnacka
,
M.
Geppert-Rybczyńska
,
B.
Hachuła
,
R.
Bernat
,
A.
Chrzanowska
,
K.
Kaminski
, and
M.
Paluch
,
J. Colloid Interface Sci.
576
,
217
229
(
2020
).
36.
H.
Masuda
,
F.
Hasegwa
, and
S.
Ono
,
J. Electrochem. Soc.
144
,
L127
L130
(
1997
).
37.
M.
Steinhart
,
Adv. Polym. Sci.
220
,
123
187
(
2008
).
38.
E. W.
Washburn
,
Phys. Rev.
17
,
273
283
(
1921
).
39.
R.
Redón
,
A.
Vázquez-Olmos
,
M. E.
Mata-Zamora
,
A.
Ordóñez-Medrano
,
F.
Rivera-Torres
, and
J. M.
Saniger
,
J. Colloid Interface Sci.
287
,
664
670
(
2005
).
40.
H.
Ghahremani
,
A.
Moradi
,
J.
Abedini-Torghabeh
, and
S. M.
Hassani
,
Der Chemica Sinica
2
(
6
),
212
221
(
2011
); available at https://www.imedpub.com/articles/measuring-surface-tension-of-binary-mixtures-of-water--alcoholsfrom-the-diffraction-pattern-of-surface-ripples.pdf.
41.
S. Z.
Mikhail
and
W. R.
Kimel
,
J. Chem. Eng. Data
8
(
3
),
323
328
(
1963
).
42.
S.
Havriliak
and
S.
Negami
,
Polymer
8
,
161
210
(
1967
).
43.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
44.
L.
Goerigk
and
S.
Grimme
,
J. Chem. Theory Comput.
7
,
291
(
2011
).
45.
S.
Grimme
,
J. Chem. Phys.
124
,
034108
(
2006
).
46.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
47.
J.-D.
Chai
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
10
,
6615
6620
(
2008
).
48.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16, Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
49.
P.
Golub
,
I.
Doroshenko
, and
V.
Pogorelov
,
Phys. Lett. A
378
,
1937
1944
(
2014
).
50.
A.
Vrhovsek
,
O.
Gereben
,
A.
Jamnik
, and
L.
Pusztai
,
J. Phys. Chem. B
115
,
13473
13488
(
2011
).
51.
S. R.
Gadre
,
S. D.
Yeole
, and
N.
Sahu
,
Chem. Rev.
114
,
12132
12173
(
2014
).
52.
M.
Umer
and
K.
Leonhard
,
J. Phys. Chem. A
117
,
1569
1582
(
2013
).
53.
S. L.
Boyd
and
R. J.
Boyd
,
J. Chem. Theory Comput.
3
,
54
61
(
2007
).
54.
F. C.
Hagemeister
,
C. J.
Gruenloh
, and
T. S.
Zwier
,
J. Phys. Chem. A
102
,
82
94
(
1998
).
55.
F.
Stickel
,
E. W.
Fischer
, and
R.
Richert
,
J. Chem. Phys.
104
,
2043
(
1996
).
56.
F.
Kremer
and
A.
Schönhals
,
Broadband Dielectric Spectroscopy
(
Springer
,
Berlin
,
2002
).
57.
G.
Floudas
,
M.
Paluch
,
A.
Grzybowski
, and
K. L.
Ngai
,
Molecular Dynamics of Glass-Forming Systems: Effects of Pressure
(
Springer
,
2011
).
58.
See https://pubchem.ncbi.nlm.nih.gov/compound/1031 for information about the mass density and the refractive index of 1-propanol at 20 °C.
59.
P.
Wieth
and
M.
Vogel
,
J. Chem. Phys.
140
,
144507
(
2014
).
60.
S.
Arrese-Igor
,
A.
Alegría
, and
J.
Colmenero
,
Phys. Chem. Chem. Phys.
20
,
27758
(
2018
).
61.
Y.
Suzuki
,
H.
Duran
,
M.
Steinhart
,
M.
Kappl
,
H.-J.
Butt
, and
G.
Floudas
,
Nano Lett.
15
,
1987
1992
(
2015
).
62.
Y.
Suzuki
,
M.
Steinhart
,
R.
Graf
,
H.-J.
Butt
, and
G.
Floudas
,
J. Phys. Chem. B
119
,
14814
14820
(
2015
).

Supplementary Material

You do not currently have access to this content.