In this work, we present NENCI-2021, a benchmark database of ∼8000 Non-Equilibirum Non-Covalent Interaction energies for a large and diverse selection of intermolecular complexes of biological and chemical relevance. To meet the growing demand for large and high-quality quantum mechanical data in the chemical sciences, NENCI-2021 starts with the 101 molecular dimers in the widely used S66 and S101 databases and extends the scope of these works by (i) including 40 cation–π and anion–π complexes, a fundamentally important class of non-covalent interactions that are found throughout nature and pose a substantial challenge to theory, and (ii) systematically sampling all 141 intermolecular potential energy surfaces (PESs) by simultaneously varying the intermolecular distance and intermolecular angle in each dimer. Designed with an emphasis on close contacts, the complexes in NENCI-2021 were generated by sampling seven intermolecular distances along each PES (ranging from 0.7× to 1.1× the equilibrium separation) and nine intermolecular angles per distance (five for each ion–π complex), yielding an extensive database of 7763 benchmark intermolecular interaction energies (Eint) obtained at the coupled-cluster with singles, doubles, and perturbative triples/complete basis set [CCSD(T)/CBS] level of theory. The Eint values in NENCI-2021 span a total of 225.3 kcal/mol, ranging from −38.5 to +186.8 kcal/mol, with a mean (median) Eint value of −1.06 kcal/mol (−2.39 kcal/mol). In addition, a wide range of intermolecular atom-pair distances are also present in NENCI-2021, where close intermolecular contacts involving atoms that are located within the so-called van der Waals envelope are prevalent—these interactions, in particular, pose an enormous challenge for molecular modeling and are observed in many important chemical and biological systems. A detailed symmetry-adapted perturbation theory (SAPT)-based energy decomposition analysis also confirms the diverse and comprehensive nature of the intermolecular binding motifs present in NENCI-2021, which now includes a significant number of primarily induction-bound dimers (e.g., cation–π complexes). NENCI-2021 thus spans all regions of the SAPT ternary diagram, thereby warranting a new four-category classification scheme that includes complexes primarily bound by electrostatics (3499), induction (700), dispersion (1372), or mixtures thereof (2192). A critical error analysis performed on a representative set of intermolecular complexes in NENCI-2021 demonstrates that the Eint values provided herein have an average error of ±0.1 kcal/mol, even for complexes with strongly repulsive Eint values, and maximum errors of ±0.2–0.3 kcal/mol (i.e., ∼±1.0 kJ/mol) for the most challenging cases. For these reasons, we expect that NENCI-2021 will play an important role in the testing, training, and development of next-generation classical and polarizable force fields, density functional theory approximations, wavefunction theory methods, and machine learning based intra- and inter-molecular potentials.

1.
D.
Langbein
,
Theory of van der Waals Attraction
(
Springer
,
Berlin
,
1974
).
2.
V.
Parsegian
,
Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists
(
Cambridge University Press
,
Cambridge
,
2005
).
3.
I. G.
Kaplan
,
Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials
(
Wiley
,
New York
,
2006
).
4.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
(
Academic Press
,
Burlington
,
2011
).
5.
A. J.
Stone
,
The Theory of Intermolecular Forces
, 2nd ed. (
Oxford University Press
,
Oxford
,
2013
).
6.
K. U.
Wendt
,
K.
Poralla
, and
G. E.
Schulz
, “
Structure and function of a squalene cyclase
,”
Science
277
,
1811
1815
(
1997
).
7.
Y.
Zhao
,
Y.
Domoto
,
E.
Orentas
,
C.
Beuchat
,
D.
Emery
,
J.
Mareda
,
N.
Sakai
, and
S.
Matile
, “
Catalysis with anion–π interactions
,”
Angew. Chem., Int. Ed.
125
,
10124
10127
(
2013
).
8.
Y.
Zhao
,
C.
Beuchat
,
Y.
Domoto
,
J.
Gajewy
,
A.
Wilson
,
J.
Mareda
,
N.
Sakai
, and
S.
Matile
, “
Anion–π catalysis
,”
J. Am. Chem. Soc.
136
,
2101
2111
(
2014
).
9.
C. R.
Kennedy
,
S.
Lin
, and
E. N.
Jacobsen
, “
The cation–π interaction in small-molecule catalysis
,”
Angew. Chem., Int. Ed.
55
,
12596
12624
(
2016
).
10.
Y.
Zhao
,
Y.
Cotelle
,
L.
Liu
,
J.
López-Andarias
,
A.-B.
Bornhof
,
M.
Akamatsu
,
N.
Sakai
, and
S.
Matile
, “
The emergence of anion–π catalysis
,”
Acc. Chem. Res.
51
,
2255
2263
(
2018
).
11.
S.
Yamada
, “
Cation–π interactions in organic synthesis
,”
Chem. Rev.
118
,
11353
11432
(
2018
).
12.
P.
Metrangolo
,
G.
Resnati
,
T.
Pilati
,
R.
Liantonio
, and
F.
Meyer
, “
Engineering functional materials by halogen bonding
,”
J. Polym. Sci., Part A: Polym. Chem.
45
,
1
15
(
2007
).
13.
P.
Metrangolo
,
T.
Pilati
,
G.
Terraneo
,
S.
Biella
, and
G.
Resnati
, “
Anion coordination and anion-templated assembly under halogen bonding control
,”
CrystEngComm
11
,
1187
1196
(
2009
).
14.
C. W.
Chen
and
H. W.
Whitlock
, Jr.
, “
Molecular tweezers: A simple model of bifunctional intercalation
,”
J. Am. Chem. Soc.
100
,
4921
4922
(
1978
).
15.
R. A.
Bissell
,
E.
Córdova
,
A. E.
Kaifer
, and
J. F.
Stoddart
, “
A chemically and electrochemically switchable molecular shuttle
,”
Nature
369
,
133
137
(
1994
).
16.
V.
Balzani
,
M.
Gómez-López
, and
J. F.
Stoddart
, “
Molecular machines
,”
Acc. Chem. Res.
31
,
405
414
(
1998
).
17.
V.
Balzani
,
A.
Credi
,
F. M.
Raymo
, and
J. F.
Stoddart
, “
Artificial molecular machines
,”
Angew. Chem., Int. Ed.
39
,
3348
3391
(
2000
).
18.
P.
Kolb
,
D. M.
Rosenbaum
,
J. J.
Irwin
,
J. J.
Fung
,
B. K.
Kobilka
, and
B. K.
Shoichet
, “
Structure-based discovery of β2-adrenergic receptor ligands
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
6843
6848
(
2009
).
19.
J.
Fanfrlík
,
A. K.
Bronowska
,
J.
Řezáč
,
O.
Přenosil
,
J.
Konvalinka
, and
P.
Hobza
, “
A reliable docking/scoring scheme based on the semiempirical quantum mechanical PM6-DH2 method accurately covering dispersion and H-bonding: HIV-1 protease with 22 ligands
,”
J. Phys. Chem. B
114
,
12666
12678
(
2010
).
20.
C.
Bissantz
,
B.
Kuhn
, and
M.
Stahl
, “
A medicinal chemist’s guide to molecular interactions
,”
J. Med. Chem.
53
,
5061
5084
(
2010
).
21.
B.
Vorlová
,
D.
Nachtigallová
,
J.
Jirásková-Vaníčková
,
H.
Ajani
,
P.
Jansa
,
J.
Řezáč
,
J.
Fanfrlík
,
M.
Otyepka
,
P.
Hobza
,
J.
Konvalinka
et al, “
Malonate-based inhibitors of mammalian serine racemase: Kinetic characterization and structure-based computational study
,”
Eur. J. Med. Chem.
89
,
189
197
(
2015
).
22.
K. A.
Dill
and
J. L.
MacCallum
, “
The protein-folding problem, 50 years on
,”
Science
338
,
1042
1046
(
2012
).
23.
J. E.
Jones
, “
On the determination of molecular fields. II. From the equation of state of a gas
,”
Proc. R. Soc. London, Ser. A
106
,
463
477
(
1924
).
24.
J. W.
Ponder
,
C.
Wu
,
P.
Ren
,
V. S.
Pande
,
J. D.
Chodera
,
M. J.
Schnieders
,
I.
Haque
,
D. L.
Mobley
,
D. S.
Lambrecht
,
R. A.
DiStasio
, Jr.
et al, “
Current status of the AMOEBA polarizable force field
,”
J. Phys. Chem. B
114
,
2549
2564
(
2010
).
25.
J. A.
Lemkul
,
J.
Huang
,
B.
Roux
, and
A. D.
MacKerell
, Jr.
, “
An empirical polarizable force field based on the classical Drude oscillator model: Development history and recent applications
,”
Chem. Rev.
116
,
4983
5013
(
2016
).
26.
S.
Grimme
, “
Density functional theory with London dispersion corrections
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
211
228
(
2011
).
27.
K.
Berland
,
V. R.
Cooper
,
K.
Lee
,
E.
Schröder
,
T.
Thonhauser
,
P.
Hyldgaard
, and
B. I.
Lundqvist
, “
van der Waals forces in density functional theory: A review of the vdW-DF method
,”
Rep. Prog. Phys.
78
,
066501
(
2015
).
28.
J.
Hermann
,
R. A.
DiStasio
, Jr.
, and
A.
Tkatchenko
, “
First-principles models for van der Waals interactions in molecules and materials: Concepts, theory, and applications
,”
Chem. Rev.
117
,
4714
4758
(
2017
).
29.
C.
Riplinger
and
F.
Neese
, “
An efficient and near linear scaling pair natural orbital based local coupled cluster method
,”
J. Chem. Phys.
138
,
034106
(
2013
).
30.
C.
Riplinger
,
B.
Sandhoefer
,
A.
Hansen
, and
F.
Neese
, “
Natural triple excitations in local coupled cluster calculations with pair natural orbitals
,”
J. Chem. Phys.
139
,
134101
(
2013
).
31.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
,
058301
(
2012
).
32.
F.
Brockherde
,
L.
Vogt
,
L.
Li
,
M. E.
Tuckerman
,
K.
Burke
, and
K.-R.
Müller
, “
Bypassing the Kohn-Sham equations with machine learning
,”
Nat. Commun.
8
,
872
(
2017
).
33.
K. T.
Schütt
,
H. E.
Sauceda
,
P.-J.
Kindermans
,
A.
Tkatchenko
, and
K.-R.
Müller
, “
SchNet—A deep learning architecture for molecules and materials
,”
J. Chem. Phys.
148
,
241722
(
2018
).
34.
T.
Bereau
,
R. A.
DiStasio
, Jr.
,
A.
Tkatchenko
, and
O. A.
von Lilienfeld
, “
Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning
,”
J. Chem. Phys.
148
,
241706
(
2018
).
35.
D. P.
Metcalf
,
A.
Koutsoukas
,
S. A.
Spronk
,
B. L.
Claus
,
D. A.
Loughney
,
S. R.
Johnson
,
D. L.
Cheney
, and
C. D.
Sherrill
, “
Approaches for machine learning intermolecular interaction energies and application to energy components from symmetry adapted perturbation theory
,”
J. Chem. Phys.
152
,
074103
(
2020
).
36.
A. M.
Reilly
,
R. I.
Cooper
,
C. S.
Adjiman
,
S.
Bhattacharya
,
A. D.
Boese
,
J. G.
Brandenburg
,
P. J.
Bygrave
,
R.
Bylsma
,
J. E.
Campbell
,
R.
Car
et al, “
Report on the sixth blind test of organic crystal structure prediction methods
,”
Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater.
72
,
439
459
(
2016
).
37.
J.
Hoja
,
H.-Y.
Ko
,
M. A.
Neumann
,
R.
Car
,
R. A.
DiStasio
, Jr.
, and
A.
Tkatchenko
, “
Reliable and practical computational description of molecular crystal polymorphs
,”
Sci. Adv.
5
,
eaau3338
(
2019
).
38.
B.
Cheng
,
G.
Mazzola
,
C. J.
Pickard
, and
M.
Ceriotti
, “
Evidence for supercritical behaviour of high-pressure liquid hydrogen
,”
Nature
585
,
217
220
(
2020
).
39.
S.
Grimme
, “
Supramolecular binding thermodynamics by dispersion-corrected density functional theory
,”
Chem. Eur. J.
18
,
9955
9964
(
2012
).
40.
A.
Tkatchenko
,
R. A.
DiStasio
, Jr.
,
R.
Car
, and
M.
Scheffler
, “
Accurate and efficient method for many-body van der Waals interactions
,”
Phys. Rev. Lett.
108
,
236402
(
2012
).
41.
R. A.
DiStasio
, Jr.
,
O. A.
von Lilienfeld
, and
A.
Tkatchenko
, “
Collective many-body van der Waals interactions in molecular systems
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
14791
14795
(
2012
).
42.
R.
Sedlak
,
T.
Janowski
,
M.
Pitoňák
,
J.
Řezáč
,
P.
Pulay
, and
P.
Hobza
, “
Accuracy of quantum chemical methods for large noncovalent complexes
,”
J. Chem. Theory Comput.
9
,
3364
3374
(
2013
).
43.
M.
Goldey
,
R. A.
DiStasio
, Jr.
,
Y.
Shao
, and
M.
Head-Gordon
, “
Shared memory multiprocessing implementation of resolution-of-the-identity second-order Møller–Plesset perturbation theory with attenuated and unattenuated results for intermolecular interactions between large molecules
,”
Mol. Phys.
112
,
836
843
(
2014
).
44.
A.
Ambrosetti
,
D.
Alfè
,
R. A.
DiStasio
, Jr.
, and
A.
Tkatchenko
, “
Hard numbers for large molecules: Toward exact energetics for supramolecular systems
,”
J. Phys. Chem. Lett.
5
,
849
855
(
2014
).
45.
R. A.
DiStasio
, Jr.
and
M.
Head-Gordon
, “
Optimized spin-component scaled second-order Møller–Plesset perturbation theory for intermolecular interaction energies
,”
Mol. Phys.
105
,
1073
1083
(
2007
).
46.
K. E.
Riley
and
P.
Hobza
, “
Assessment of the MP2 method, along with several basis sets, for the computation of interaction energies of biologically relevant hydrogen bonded and dispersion bound complexes
,”
J. Phys. Chem. A
111
,
8257
8263
(
2007
).
47.
K. E.
Riley
,
J. A.
Platts
,
J.
Řezáč
,
P.
Hobza
, and
J. G.
Hill
, “
Assessment of the performance of MP2 and MP2 variants for the treatment of noncovalent interactions
,”
J. Phys. Chem. A
116
,
4159
4169
(
2012
).
48.
B. G.
Ernst
,
K. U.
Lao
,
A. G.
Sullivan
, and
R. A.
DiStasio
, Jr.
, “
Attracting opposites: Promiscuous ion–π binding in the nucleobases
,”
J. Phys. Chem. A
124
,
4128
4140
(
2020
).
49.
Q.
Wang
,
J. A.
Rackers
,
C.
He
,
R.
Qi
,
C.
Narth
,
L.
Lagardere
,
N.
Gresh
,
J. W.
Ponder
,
J.-P.
Piquemal
, and
P.
Ren
, “
General model for treating short-range electrostatic penetration in a molecular mechanics force field
,”
J. Chem. Theory Comput.
11
,
2609
2618
(
2015
).
50.
T.
Gould
,
E. R.
Johnson
, and
S. A.
Tawfik
, “
Are dispersion corrections accurate outside equilibrium? A case study on benzene
,”
Beilstein J. Org. Chem.
14
,
1181
1191
(
2018
).
51.
R. A.
Mata
and
M. A.
Suhm
, “
Benchmarking quantum chemical methods: Are we heading in the right direction?
,”
Angew. Chem., Int. Ed.
56
,
11011
11018
(
2017
).
52.
J.
Řezáč
and
P.
Hobza
, “
Describing noncovalent interactions beyond the common approximations: How accurate is the ‘gold standard,’ CCSD(T) at the complete basis set limit?
,”
J. Chem. Theory Comput.
9
,
2151
2155
(
2013
).
53.
L. A.
Burns
,
M. S.
Marshall
, and
C. D.
Sherrill
, “
Appointing silver and bronze standards for noncovalent interactions: A comparison of spin-component-scaled (SCS), explicitly correlated (F12), and specialized wavefunction approaches
,”
J. Chem. Phys.
141
,
234111
(
2014
).
54.
P.
Jurečka
,
J.
Šponer
,
J.
Černỳ
, and
P.
Hobza
, “
Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs
,”
Phys. Chem. Chem. Phys.
8
,
1985
1993
(
2006
).
55.
M. S.
Marshall
,
L. A.
Burns
, and
C. D.
Sherrill
, “
Basis set convergence of the coupled-cluster correction, δCCSD(T)MP2: Best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases
,”
J. Chem. Phys.
135
,
194102
(
2011
).
56.
L.
Gráfová
,
M.
Pitoňák
,
J.
Řezáč
, and
P.
Hobza
, “
Comparative study of selected wave function and density functional methods for noncovalent interaction energy calculations using the extended S22 data set
,”
J. Chem. Theory Comput.
6
,
2365
2376
(
2010
).
57.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
, “
S66: A well-balanced database of benchmark interaction energies relevant to biomolecular structures
,”
J. Chem. Theory Comput.
7
,
2427
2438
(
2011
).
58.
B.
Brauer
,
M. K.
Kesharwani
,
S.
Kozuch
, and
J. M. L.
Martin
, “
The S66x8 benchmark for noncovalent interactions revisited: Explicitly correlated ab initio methods and density functional theory
,”
Phys. Chem. Chem. Phys.
18
,
20905
20925
(
2016
).
59.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
, “
Extensions of the S66 data set: More accurate interaction energies and angular-displaced nonequilibrium geometries
,”
J. Chem. Theory Comput.
7
,
3466
3470
(
2011
).
60.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
, “
Benchmark calculations of noncovalent interactions of halogenated molecules
,”
J. Chem. Theory Comput.
8
,
4285
4292
(
2012
).
61.
T. M.
Parker
and
C. D.
Sherrill
, “
Assessment of empirical models versus high-accuracy ab initio methods for nucleobase stacking: Evaluating the importance of charge penetration
,”
J. Chem. Theory Comput.
11
,
4197
4204
(
2015
).
62.
Y.
Zhao
and
D. G.
Truhlar
, “
Benchmark databases for nonbonded interactions and their use to test density functional theory
,”
J. Chem. Theory Comput.
1
,
415
432
(
2005
).
63.
S.
Tsuzuki
,
K.
Honda
,
T.
Uchimaru
, and
M.
Mikami
, “
Estimated MP2 and CCSD(T) interaction energies of n-alkane dimers at the basis set limit: Comparison of the methods of Helgaker et al. and Feller
,”
J. Chem. Phys.
124
,
114304
(
2006
).
64.
S.
Kozuch
and
J. M. L.
Martin
, “
Halogen bonds: Benchmarks and theoretical analysis
,”
J. Chem. Theory Comput.
9
,
1918
1931
(
2013
).
65.
B. J.
Mintz
and
J. M.
Parks
, “
Benchmark interaction energies for biologically relevant noncovalent complexes containing divalent sulfur
,”
J. Phys. Chem. A
116
,
1086
1092
(
2012
).
66.
J.
Řezáč
and
P.
Hobza
, “
Advanced corrections of hydrogen bonding and dispersion for semiempirical quantum mechanical methods
,”
J. Chem. Theory Comput.
8
,
141
151
(
2012
).
67.
J. C.
Faver
,
M. L.
Benson
,
X.
He
,
B. P.
Roberts
,
B.
Wang
,
M. S.
Marshall
,
M. R.
Kennedy
,
C. D.
Sherrill
, and
K. M.
Merz
, “
Formal estimation of errors in computed absolute interaction energies of protein-ligand complexes
,”
J. Chem. Theory Comput.
7
,
790
797
(
2011
).
68.
J.
Řezáč
,
M.
Dubeckỳ
,
P.
Jurečka
, and
P.
Hobza
, “
Extensions and applications of the A24 data set of accurate interaction energies
,”
Phys. Chem. Chem. Phys.
17
,
19268
19277
(
2015
).
69.
D. G. A.
Smith
,
L. A.
Burns
,
K.
Patkowski
, and
C. D.
Sherrill
, “
Revised damping parameters for the D3 dispersion correction to density functional theory
,”
J. Phys. Chem. Lett.
7
,
2197
2203
(
2016
).
70.
L.
Goerigk
,
A.
Hansen
,
C.
Bauer
,
S.
Ehrlich
,
A.
Najibi
, and
S.
Grimme
, “
A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions
,”
Phys. Chem. Chem. Phys.
19
,
32184
32215
(
2017
).
71.
J.
Řezáč
,
Y.
Huang
,
P.
Hobza
, and
G. J. O.
Beran
, “
Benchmark calculations of three-body intermolecular interactions and the performance of low-cost electronic structure methods
,”
J. Chem. Theory Comput.
11
,
3065
3079
(
2015
).
72.
J. G.
McDaniel
and
J. R.
Schmidt
, “
Physically-motivated force fields from symmetry-adapted perturbation theory
,”
J. Phys. Chem. A
117
,
2053
2066
(
2013
).
73.
J. G.
McDaniel
and
J. R.
Schmidt
, “
First-principles many-body force fields from the gas phase to liquid: A ‘universal’ approach
,”
J. Phys. Chem. B
118
,
8042
8053
(
2014
).
74.
S.
Vandenbrande
,
M.
Waroquier
,
V. V.
Speybroeck
, and
T.
Verstraelen
, “
The monomer electron density force field (MEDFF): A physically inspired model for noncovalent interactions
,”
J. Chem. Theory Comput.
13
,
161
179
(
2017
).
75.
J.
Řezáč
and
P.
Hobza
, “
Benchmark calculations of interaction energies in noncovalent complexes and their applications
,”
Chem. Rev.
116
,
5038
5071
(
2016
).
76.
P.
Morgante
and
R.
Peverati
, “
ACCDB: A collection of chemistry databases for broad computational purposes
,”
J. Comput. Chem.
40
,
839
848
(
2019
).
77.
J.
Řezáč
, “
Non-covalent interactions atlas benchmark data sets: Hydrogen bonding
,”
J. Chem. Theory Comput.
16
,
2355
2368
(
2020
).
78.
J.
Řezáč
, “
Non-covalent interactions atlas benchmark data sets 2: Hydrogen bonding in an extended chemical space
,”
J. Chem. Theory Comput.
16
,
6305
6316
(
2020
).
79.
K.
Kříž
,
M.
Nováček
, and
J.
Řezáč
, “
Non-covalent interactions atlas benchmark data sets 3: Repulsive contacts
,”
J. Chem. Theory Comput.
17
,
1548
1561
(
2021
).
80.
A. G.
Donchev
,
A. G.
Taube
,
E.
Decolvenaere
,
C.
Hargus
,
R. T.
McGibbon
,
K.-H.
Law
,
B. A.
Gregersen
,
J.-L.
Li
,
K.
Palmo
,
K.
Siva
,
M.
Bergdorf
,
J. L.
Klepeis
, and
D. E.
Shaw
, “
Quantum chemical benchmark databases of gold-standard dimer interaction energies
,”
Sci. Data
8
,
55
(
2021
).
81.
V. M.
Miriyala
and
J.
Řezáč
, “
Testing semiempirical quantum mechanical methods on a data set of interaction energies mapping repulsive contacts in organic molecules
,”
J. Phys. Chem. A
122
,
2801
2808
(
2018
).
82.
V.
Bazgier
,
K.
Berka
,
M.
Otyepka
, and
P.
Banáš
, “
Exponential repulsion improves structural predictability of molecular docking
,”
J. Comput. Chem.
37
,
2485
2494
(
2016
).
83.
L.
Song
,
N.
Fu
,
B. G.
Ernst
,
W. H.
Lee
,
M. O.
Frederick
,
R. A.
DiStasio
, Jr.
, and
S.
Lin
, “
Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes
,”
Nat. Chem.
12
,
747
754
(
2020
).
84.
C. J.
Sahle
,
C.
Sternemann
,
C.
Schmidt
,
S.
Lehtola
,
S.
Jahn
,
L.
Simonelli
,
S.
Huotari
,
M.
Hakala
,
T.
Pylkkänen
,
A.
Nyrow
,
K.
Mende
,
M.
Tolan
,
K.
Hämäläinen
, and
M.
Wilke
, “
Microscopic structure of water at elevated pressures and temperatures
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
6301
6306
(
2013
).
85.
M.
Miao
,
Y.
Sun
,
E.
Zurek
, and
H.
Lin
, “
Chemistry under high pressure
,”
Nat. Rev. Chem.
4
,
508
527
(
2020
).
86.
H.
Liu
,
I. I.
Naumov
,
R.
Hoffmann
,
N. W.
Ashcroft
, and
R. J.
Hemley
, “
Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
6990
6995
(
2017
).
87.
E. G.
Hohenstein
,
J.
Duan
, and
C. D.
Sherrill
, “
Origin of the surprising enhancement of electrostatic energies by electron-donating substituents in substituted sandwich benzene dimers
,”
J. Am. Chem. Soc.
133
,
13244
13247
(
2011
).
88.
B.
Jeziorski
,
R.
Moszynski
, and
K.
Szalewicz
, “
Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes
,”
Chem. Rev.
94
,
1887
1930
(
1994
).
89.
K. U.
Lao
and
J. M.
Herbert
, “
Breakdown of the single-exchange approximation in third-order symmetry-adapted perturbation theory
,”
J. Phys. Chem. A
116
,
3042
3047
(
2012
).
90.
N.
Mardirossian
and
M.
Head-Gordon
, “
Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals
,”
Mol. Phys.
115
,
2315
2372
(
2017
).
91.
B. G.
Ernst
,
Z. M.
Sparrow
, and
R. A.
DiStasio
, Jr.
, “
NENCI-2021 Part II: Evaluating the performance of quantum chemical approximations on the NENCI-2021 benchmark database
” (unpublished).
92.
P.
Politzer
,
J. S.
Murray
, and
T.
Clark
, “
Halogen bonding: An electrostatically-driven highly directional noncovalent interaction
,”
Phys. Chem. Chem. Phys.
12
,
7748
7757
(
2010
).
93.
D. A.
Dougherty
, “
Cation–π interactions in chemistry and biology: A new view of benzene, Phe, Tyr, and Trp
,”
Science
271
,
163
168
(
1996
).
94.
J. C.
Ma
and
D. A.
Dougherty
, “
The cation–π interaction
,”
Chem. Rev.
97
,
1303
1324
(
1997
).
95.
A. S.
Mahadevi
and
G. N.
Sastry
, “
Cation–π interaction: Its role and relevance in chemistry, biology, and material science
,”
Chem. Rev.
113
,
2100
2138
(
2012
).
96.
A.
Frontera
,
P.
Gamez
,
M.
Mascal
,
T. J.
Mooibroek
, and
J.
Reedijk
, “
Putting anion–π interactions into perspective
,”
Angew. Chem., Int. Ed.
50
,
9564
9583
(
2011
).
97.
B. L.
Schottel
,
H. T.
Chifotides
, and
K. R.
Dunbar
, “
Anion–π interactions
,”
Chem. Soc. Rev.
37
,
68
83
(
2008
).
98.
M. S.
Marshall
,
R. P.
Steele
,
K. S.
Thanthiriwatte
, and
C. D.
Sherrill
, “
Potential energy curves for cation–π interactions: Off-axis configurations are also attractive
,”
J. Phys. Chem. A
113
,
13628
13632
(
2009
).
99.
J.
Novotnỳ
,
S.
Bazzi
,
R.
Marek
, and
J.
Kozelka
, “
Lone-pair–π interactions: Analysis of the physical origin and biological implications
,”
Phys. Chem. Chem. Phys.
18
,
19472
19481
(
2016
).
100.
A.
Laio
and
M.
Parrinello
, “
Escaping free-energy minima
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
12566
(
2002
).
101.
S. F.
Boys
and
F.
Bernardi
, “
The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
,”
Mol. Phys.
19
,
553
566
(
1970
).
102.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
103.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
104.
D. E.
Woon
and
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon
,”
J. Chem. Phys.
98
,
1358
1371
(
1993
).
105.
A. K.
Wilson
,
D. E.
Woon
,
K. A.
Peterson
, and
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton
,”
J. Chem. Phys.
110
,
7667
7676
(
1999
).
106.
B. P.
Prascher
,
D. E.
Woon
,
K. A.
Peterson
,
T. H.
Dunning
, Jr.
, and
A. K.
Wilson
, “
Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg
,”
Theor. Chem. Acc.
128
,
69
82
(
2011
).
107.
P.
Jurečka
,
P.
Nachtigall
, and
P.
Hobza
, “
RI-MP2 calculations with extended basis sets—A promising tool for study of H-bonded and stacked DNA base pairs
,”
Phys. Chem. Chem. Phys.
3
,
4578
4582
(
2001
).
108.
A. E.
DePrince
and
C. D.
Sherrill
, “
Accuracy and efficiency of coupled-cluster theory using density fitting/Cholesky decomposition, frozen natural orbitals, and a t1-transformed Hamiltonian
,”
J. Chem. Theory Comput.
9
,
2687
2696
(
2013
).
109.
F.
Weigend
, “
A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency
,”
Phys. Chem. Chem. Phys.
4
,
4285
4291
(
2002
).
110.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
, “
Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations
,”
J. Chem. Phys.
116
,
3175
3183
(
2002
).
111.
C.
Hättig
, “
Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core–valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr
,”
Phys. Chem. Chem. Phys.
7
,
59
66
(
2005
).
112.
F.
Weigend
, “
Hartree–Fock exchange fitting basis sets for H to Rn
,”
J. Comput. Chem.
29
,
167
175
(
2008
).
113.
A.
Hellweg
and
D.
Rappoport
, “
Development of new auxiliary basis functions of the Karlsruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations
,”
Phys. Chem. Chem. Phys.
17
,
1010
1017
(
2015
).
114.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, “
Molpro: A general-purpose quantum chemistry program package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
253
(
2012
).
115.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
W.
Györffy
,
D.
Kats
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
,
K. R.
Shamasundar
,
T. B.
Adler
,
R. D.
Amos
,
S. J.
Bennie
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
E.
Goll
,
C.
Hampel
,
A.
Hesselmann
,
G.
Hetzer
,
T.
Hrenar
,
G.
Jansen
,
C.
Köppl
,
S. J. R.
Lee
,
Y.
Liu
,
A. W.
Lloyd
,
Q.
Ma
,
R. A.
Mata
,
A. J.
May
,
S. J.
McNicholas
,
W.
Meyer
,
T. F.
Miller
III
,
M. E.
Mura
,
A.
Nicklass
,
D. P.
O’Neill
,
P.
Palmieri
,
D.
Peng
,
K.
Pflüger
,
R.
Pitzer
,
M.
Reiher
,
T.
Shiozaki
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
,
M.
Wang
, and
M.
Welborn
, Molpro, version 2019.2, a package of ab initio programs,
2019
, see https://www.molpro.net.
116.
E.
Papajak
,
J.
Zheng
,
X.
Xu
,
H. R.
Leverentz
, and
D. G.
Truhlar
, “
Perspectives on basis sets beautiful: Seasonal plantings of diffuse basis functions
,”
J. Chem. Theory Comput.
7
,
3027
3034
(
2011
).
117.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
, “
Basis-set convergence in correlated calculations on Ne, N2, and H2O
,”
Chem. Phys. Lett.
286
,
243
252
(
1998
).
118.
E. G.
Hohenstein
and
C. D.
Sherrill
, “
Density fitting and Cholesky decomposition approximations in symmetry-adapted perturbation theory: Implementation and application to probe the nature of ππ interactions in linear acenes
,”
J. Chem. Phys.
132
,
184111
(
2010
).
119.
E. G.
Hohenstein
,
R. M.
Parrish
,
C. D.
Sherrill
,
J. M.
Turney
, and
H. F.
Schaefer
III
, “
Large-scale symmetry-adapted perturbation theory computations via density fitting and Laplace transformation techniques: Investigating the fundamental forces of DNA-intercalator interactions
,”
J. Chem. Phys.
135
,
174107
(
2011
).
120.
E. G.
Hohenstein
and
C. D.
Sherrill
, “
Density fitting of intramonomer correlation effects in symmetry-adapted perturbation theory
,”
J. Chem. Phys.
133
,
014101
(
2010
).
121.
E. G.
Hohenstein
and
C. D.
Sherrill
, “
Efficient evaluation of triple excitations in symmetry-adapted perturbation theory via second-order Møller–Plesset perturbation theory natural orbitals
,”
J. Chem. Phys.
133
,
104107
(
2010
).
122.
T. M.
Parker
,
L. A.
Burns
,
R. M.
Parrish
,
A. G.
Ryno
, and
C. D.
Sherrill
, “
Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies
,”
J. Chem. Phys.
140
,
094106
(
2014
).
123.
R. M.
Parrish
,
L. A.
Burns
,
D. G. A.
Smith
,
A. C.
Simmonett
,
A. E.
DePrince
,
E. G.
Hohenstein
,
U.
Bozkaya
,
A. Y.
Sokolov
,
R.
Di Remigio
,
R. M.
Richard
,
J. F.
Gonthier
,
A. M.
James
,
H. R.
McAlexander
,
A.
Kumar
,
M.
Saitow
,
X.
Wang
,
B. P.
Pritchard
,
P.
Verma
,
H. F.
Schaefer
III
,
K.
Patkowski
,
R. A.
King
,
E. F.
Valeev
,
F. A.
Evangelista
,
J. M.
Turney
,
T. D.
Crawford
, and
C. D.
Sherrill
, “
Psi4 1.1: An open-source electronic structure program emphasizing automation, advanced libraries, and interoperability
,”
J. Chem. Theory Comput.
13
,
3185
3197
(
2017
).
124.
A.
Bondi
, “
van der Waals volumes and radii
,”
J. Chem. Phys.
68
,
441
451
(
1964
).
125.
R. S.
Rowland
and
R.
Taylor
, “
Intermolecular nonbonded contact distances in organic crystal structures: Comparison with distances expected from van der Waals radii
,”
J. Phys. Chem.
100
,
7384
7391
(
1996
).
126.
N. J.
Singh
,
S. K.
Min
,
D. Y.
Kim
, and
K. S.
Kim
, “
Comprehensive energy analysis for various types of π-interaction
,”
J. Chem. Theory Comput.
5
,
515
529
(
2009
).
127.
K. S.
Thanthiriwatte
,
E. G.
Hohenstein
,
L. A.
Burns
, and
C. D.
Sherrill
, “
Assessment of the performance of DFT and DFT-D methods for describing distance dependence of hydrogen-bonded interactions
,”
J. Chem. Theory Comput.
7
,
88
96
(
2011
).
128.
M. O.
Sinnokrot
and
C. D.
Sherrill
, “
High-accuracy quantum mechanical studies of ππ interactions in benzene dimers
,”
J. Phys. Chem. A
110
,
10656
10668
(
2006
).
129.
A. L.
Ringer
,
M. S.
Figgs
,
M. O.
Sinnokrot
, and
C. D.
Sherrill
, “
Aliphatic C–H/π interactions: Methane–benzene, methane–phenol, and methane–indole complexes
,”
J. Phys. Chem. A
110
,
10822
10828
(
2006
).
130.
C. D.
Sherrill
,
T.
Takatani
, and
E. G.
Hohenstein
, “
An assessment of theoretical methods for nonbonded interactions: Comparison to complete basis set limit coupled-cluster potential energy curves for the benzene dimer, the methane dimer, benzene-methane, and benzene-H2S
,”
J. Phys. Chem. A
113
,
10146
10159
(
2009
).
131.
Y.
Geng
,
T.
Takatani
,
E. G.
Hohenstein
, and
C. D.
Sherrill
, “
Accurately characterizing the ππ interaction energies of indole-benzene complexes
,”
J. Phys. Chem. A
114
,
3576
3582
(
2010
).
132.
K. U.
Lao
,
R.
Schäffer
,
G.
Jansen
, and
J. M.
Herbert
, “
Accurate description of intermolecular interactions involving ions using symmetry-adapted perturbation theory
,”
J. Chem. Theory Comput.
11
,
2473
2486
(
2015
).
133.
L. A.
Burns
,
J. C.
Faver
,
Z.
Zheng
,
M. S.
Marshall
,
D. G. A.
Smith
,
K.
Vanommeslaeghe
,
A. D.
MacKerell
,
K. M.
Merz
, and
C. D.
Sherrill
, “
The biofragment database (BFDb): An open-data platform for computational chemistry analysis of noncovalent interactions
,”
J. Chem. Phys.
147
,
161727
(
2017
).
134.
J. A.
Rackers
,
Q.
Wang
,
C.
Liu
,
J.-P.
Piquemal
,
P.
Ren
, and
J. W.
Ponder
, “
An optimized charge penetration model for use with the AMOEBA force field
,”
Phys. Chem. Chem. Phys.
19
,
276
291
(
2017
).
135.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
, and
J.
Olsen
, “
Basis-set convergence of the energy in molecular Hartree–Fock calculations
,”
Chem. Phys. Lett.
302
,
437
446
(
1999
).
136.
A. L. L.
East
and
W. D.
Allen
, “
The heat of formation of NCO
,”
J. Chem. Phys.
99
,
4638
4650
(
1993
).
137.
M. O.
Sinnokrot
,
E. F.
Valeev
, and
C. D.
Sherrill
, “
Estimates of the ab initio limit for ππ interactions: The benzene dimer
,”
J. Am. Chem. Soc.
124
,
10887
10893
(
2002
).
138.
M.
Pitoňák
,
T.
Janowski
,
P.
Neogrády
,
P.
Pulay
, and
P.
Hobza
, “
Convergence of the CCSD(T) correction term for the stacked complex methyl adenine-methyl thymine: Comparison with lower-cost alternatives
,”
J. Chem. Theory Comput.
5
,
1761
1766
(
2009
).
139.
A. D.
Boese
,
J. M. L.
Martin
, and
W.
Klopper
, “
Basis set limit coupled cluster study of H-bonded systems and assessment of more approximate methods
,”
J. Phys. Chem. A
111
,
11122
11133
(
2007
).
140.
L.
Demovičová
,
P.
Hobza
, and
J.
Řezáč
, “
Evaluation of composite schemes for CCSDT(Q) calculations of interaction energies of noncovalent complexes
,”
Phys. Chem. Chem. Phys.
16
,
19115
19121
(
2014
).
141.
J. E.
Deustua
,
J.
Shen
, and
P.
Piecuch
, “
Converging high-level coupled-cluster energetics by Monte Carlo sampling and moment expansions
,”
Phys. Rev. Lett.
119
,
223003
(
2017
).
142.
C. J. C.
Scott
,
R.
Di Remigio
,
T. D.
Crawford
, and
A. J. W.
Thom
, “
Diagrammatic coupled cluster Monte Carlo
,”
J. Phys. Chem. Lett.
10
,
925
935
(
2019
).
143.
C. J. C.
Scott
,
R.
Di Remigio
,
T. D.
Crawford
, and
A. J. W.
Thom
, “
Theory and implementation of a novel stochastic approach to coupled cluster
,”
J. Chem. Phys.
153
,
144117
(
2020
).
144.
N. S.
Blunt
,
S. D.
Smart
,
J. A. F.
Kersten
,
J. S.
Spencer
,
G. H.
Booth
, and
A.
Alavi
, “
Semi-stochastic full configuration interaction quantum Monte Carlo: Developments and application
,”
J. Chem. Phys.
142
,
184107
(
2015
).
145.
S.
Sharma
,
A. A.
Holmes
,
G.
Jeanmairet
,
A.
Alavi
, and
C. J.
Umrigar
, “
Semistochastic heat-bath configuration interaction method: Selected configuration interaction with semistochastic perturbation theory
,”
J. Chem. Theory Comput.
13
,
1595
1604
(
2017
).
146.
J.
Li
,
M.
Otten
,
A. A.
Holmes
,
S.
Sharma
, and
C. J.
Umrigar
, “
Fast semistochastic heat-bath configuration interaction
,”
J. Chem. Phys.
149
,
214110
(
2018
).
147.
J.
Proppe
,
S.
Gugler
, and
M.
Reiher
, “
Gaussian process-based refinement of dispersion corrections
,”
J. Chem. Theory Comput.
15
,
6046
6060
(
2019
).
148.
M.
Veit
,
D. M.
Wilkins
,
Y.
Yang
,
R. A.
DiStasio
, Jr.
, and
M.
Ceriotti
, “
Predicting molecular dipole moments by combining atomic partial charges and atomic dipoles
,”
J. Chem. Phys.
153
,
024113
(
2020
).
149.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1, a data set of 20 million calculated off-equilibrium conformations for organic molecules
,”
Sci. Data
4
,
170193
(
2017
).
150.
J.
Hoja
,
L. M.
Sandonas
,
B. G.
Ernst
,
A.
Vazquez-Mayagoitia
,
R. A.
DiStasio
, Jr.
, and
A.
Tkatchenko
, “
QM7-X, a comprehensive dataset of quantum-mechanical properties spanning the chemical space of small organic molecules
,”
Sci. Data
8
,
43
(
2021
).
151.
Y.
Yang
,
K. U.
Lao
,
D. M.
Wilkins
,
A.
Grisafi
,
M.
Ceriotti
, and
R. A.
DiStasio
, Jr.
, “
Quantum mechanical static dipole polarizabilities in the QM7b and AlphaML showcase databases
,”
Sci. Data
6
,
152
(
2019
).
152.
D. M.
Wilkins
,
A.
Grisafi
,
Y.
Yang
,
K. U.
Lao
,
R. A.
DiStasio
, Jr.
, and
M.
Ceriotti
, “
Accurate molecular polarizabilities with coupled cluster theory and machine learning
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
3401
3406
(
2019
).
153.
S.
Yue
,
M. C.
Muniz
,
M. F.
Calegari Andrade
,
L.
Zhang
,
R.
Car
, and
A. Z.
Panagiotopoulos
, “
When do short-range atomistic machine-learning models fall short?
,”
J. Chem. Phys.
154
,
034111
(
2021
).

Supplementary Material

You do not currently have access to this content.