Oscillatory processes are essential for normal functioning and survival of biological systems, and reactive oxygen species have a prominent role in many of them. A mechanism representing the dynamics of these species in the rhizosphere is analyzed using stoichiometric network analysis with the aim to determine its capabilities to simulate various dynamical states, including oscillations. A detailed analysis has shown that unstable steady states result from four destabilizing feedback cycles, among which the cycle involving hydroquinone, an electron acceptor, and its semi-reduced form is the dominant one responsible for the existence of saddle-node and Andronov–Hopf bifurcations. This requires a higher steady-state concentration for the reduced electron acceptor compared to that of the remaining species, where the level of oxygen steady-state concentration determines whether the Andronov–Hopf or saddle-node bifurcation will occur.

1.
I. R.
Epstein
and
J. A.
Pojman
,
An Introduction to Nonlinear Dynamics: Oscillations, Waves, Patterns, and Chaos
(
Oxford University Press
,
Oxford
,
1998
).
2.
G.
Hu
,
J. A.
Pojman
,
S. K.
Scott
,
M. M.
Wrobel
, and
A. F.
Taylor
, “
Base-catalyzed feedback in the urea- urease reaction
,”
J. Phys. Chem. B
114
,
14059
14063
(
2010
).
3.
N. E.
Kouvaris
,
M.
Sebek
,
A. S.
Mikhailov
, and
I. Z.
Kiss
, “
Self-organized stationary patterns in networks of bistable chemical reactions
,”
Angew. Chem., Int. Ed.
55
,
13267
13270
(
2016
).
4.
I.
Maity
,
N.
Wagner
,
R.
Mukherjee
,
D.
Dev
,
E.
Peacock-Lopez
,
R.
Cohen-Luria
, and
G.
Ashkenasy
, “
A chemically fueled non-enzymatic bistable network
,”
Nat. Commun.
10
,
4636
(
2019
).
5.
A.
Zlotnik
,
R.
Nagao
,
I. Z.
Kiss
, and
J.-S.
Li
, “
Phase-selective entrainment of nonlinear oscillator ensembles
,”
Nat. Commun.
7
,
10788
(
2016
).
6.
S. N.
Semenov
,
L. J.
Kraft
,
A.
Ainla
,
M.
Zhao
,
M.
Baghbanzadeh
,
V. E.
Campbell
,
K.
Kang
,
J. M.
Fox
, and
G. M.
Whitesides
, “
Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions
,”
Nature
537
,
656
660
(
2016
).
7.
J.
Leira-Iglesias
,
A.
Tassoni
,
T.
Adachi
,
M.
Stich
, and
T. M.
Hermans
, “
Oscillations, travelling fronts and patterns in a supramolecular system
,”
Nat. Nanotechnol.
13
,
1021
1027
(
2018
).
8.
B.
Bohner
,
T.
Bánsági
,
Á.
Tóth
,
D.
Horváth
, and
A. F.
Taylor
, “
Periodic nucleation of calcium phosphate in a stirred bio-catalytic reaction
,”
Angew. Chem., Int. Ed.
59
,
2823
2828
(
2020
).
9.
I. Z.
Kiss
,
W.
Wang
, and
J. L.
Hudson
, “
Complexity of globally coupled chaotic electrochemical oscillators
,”
Phys. Chem. Chem. Phys.
2
,
3847
3854
(
2000
).
10.
M. A.
Budroni
,
I.
Calabrese
,
Y.
Miele
,
M.
Rustici
,
N.
Marchettini
, and
F.
Rossi
, “
Control of chemical chaos through medium viscosity in a batch ferroin-catalysed Belousov–Zhabotinsky reaction
,”
Phys. Chem. Chem. Phys.
19
,
32235
32241
(
2017
).
11.
G.
Bodó
,
R. M. M.
Branca
,
Á.
Tóth
,
D.
Horváth
, and
C.
Bagyinka
, “
Concentration-dependent front velocity of the autocatalytic hydrogenase reaction
,”
Biophys. J.
96
,
4976
4983
(
2009
).
12.
D. G.
Míguez
,
V. K.
Vanag
, and
I. R.
Epstein
, “
Fronts and pulses in an enzymatic reaction catalyzed by glucose oxidase
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
6992
6997
(
2007
).
13.
M. M.
Wrobel
,
T.
Bánsági
, Jr.
,
S. K.
Scott
,
A. F.
Taylor
,
C. O.
Bounds
,
A.
Carranza
, and
J. A.
Pojman
, “
pH wave-front propagation in the urea-urease reaction
,”
Biophys. J.
103
,
610
615
(
2012
).
14.
J.
Sneyd
,
J. M.
Han
,
L.
Wang
,
J.
Chen
,
X.
Yang
,
A.
Tanimura
,
M. J.
Sanderson
,
V.
Kirk
, and
D. I.
Yule
, “
On the dynamical structure of calcium oscillations
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
1456
1461
(
2017
).
15.
R.
Balaji
,
C.
Bielmeier
,
H.
Harz
,
J.
Bates
,
C.
Stadler
,
A.
Hildebrand
, and
A.-K.
Classen
, “
Calcium spikes, waves and oscillations in a large, patterned epithelial tissue
,”
Sci. Rep.
7
,
42786
(
2017
).
16.
A.-K.
Gustavsson
,
C. B.
Adiels
,
B.
Mehlig
, and
M.
Goksör
, “
Entrainment of heterogeneous glycolytic oscillations in single cells
,”
Sci. Rep.
5
,
9404
(
2015
).
17.
A.
Weber
,
W.
Zuschratter
, and
M. J. B.
Hauser
, “
Partial synchronisation of glycolytic oscillations in yeast cell populations
,”
Sci. Rep.
10
,
19714
(
2020
).
18.
J.-C.
Leloup
and
A.
Goldbeter
, “
Toward a detailed computational model for the mammalian circadian clock
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
7051
7056
(
2003
).
19.
J. D.
Veldhuis
,
D. M.
Keenan
, and
S. M.
Pincus
, “
Motivations and methods for analyzing pulsatile hormone secretion
,”
Endocr. Rev.
29
,
823
864
(
2008
).
20.
K. L.
Gamble
,
R.
Berry
,
S. J.
Frank
, and
M. E.
Young
, “
Circadian clock control of endocrine factors
,”
Nat. Rev. Endocrinol.
10
,
466
475
(
2014
).
21.
V. M.
Marković
,
Ž.
Čupić
,
S.
Maćešić
,
A.
Stanojević
,
V.
Vukojević
, and
L.
Kolar-Anić
, “
Modelling cholesterol effects on the dynamics of the hypothalamic–pituitary–adrenal (HPA) axis
,”
Math. Med. Biol.
33
,
1
28
(
2016
).
22.
G. B.
Monshausen
,
T. N.
Bibikova
,
M. A.
Messerli
,
C.
Shi
, and
S.
Gilroy
, “
Oscillations in extracellular ph and reactive oxygen species modulate tip growth of Arabidopsis root hairs
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
20996
21001
(
2007
).
23.
Z. A.
Wood
,
L. B.
Poole
, and
P. A.
Karplus
, “
Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
,”
Science
300
,
650
653
(
2003
).
24.
M.
Potockỳ
,
M. A.
Jones
,
R.
Bezvoda
,
N.
Smirnoff
, and
V.
Žárskỳ
, “
Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth
,”
New Phytol.
174
,
742
751
(
2007
).
25.
S. S.
Gill
and
N.
Tuteja
, “
Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants
,”
Plant Physiol. Biochem.
48
,
909
930
(
2010
).
26.
C. H.
Foyer
and
G.
Noctor
, “
Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses
,”
Plant Cell
17
,
1866
1875
(
2005
).
27.
B.
Halliwell
, “
Reactive species and antioxidants: Redox biology is a fundamental theme of aerobic life
,”
Plant Physiol.
141
,
312
322
(
2006
).
28.
A.
Krieger-Liszkay
,
C.
Fufezan
, and
A.
Trebst
, “
Singlet oxygen production in photosystem II and related protection mechanism
,”
Photosynth. Res.
98
,
551
564
(
2008
).
29.
O.
Taran
,
V.
Patel
, and
D. G.
Lynn
, “
Small molecule reaction networks that model the ROS dynamics of the rhizosphere
,”
Chem. Commun.
55
,
3602
3605
(
2019
).
30.
Y. X.
Zhang
and
R. J.
Field
, “
Simplification of a mechanism of the methylene blue hydrosulfide-oxygen CSTR oscillator: A homogeneous oscillatory mechanism with nonlinearities but no autocatalysis
,”
J. Phys. Chem.
95
,
723
727
(
1991
).
31.
B. L.
Clarke
, “
Stability of complex reaction networks
,”
Adv. Chem. Phys.
43
,
1
215
(
1980
).
32.
G.
Schmitz
,
L. Z.
Kolar-Anić
,
S. R.
Anić
, and
Ž. D.
Čupić
, “
Stoichiometric network analysis and associated dimensionless kinetic equations. application to a model of the Bray–Liebhafsky reaction
,”
J. Phys. Chem. A
112
,
13452
13457
(
2008
).
33.
V.
Radojkovič
and
I.
Schreiber
, “
Constrained stoichiometric network analysis
,”
Phys. Chem. Chem. Phys.
20
,
9910
9921
(
2018
).
34.
J. A. C.
Gallas
,
M. J. B.
Hauser
, and
L. F.
Olsen
, “
Complexity of a peroxidase–oxidase reaction model
,”
Phys. Chem. Chem. Phys.
23
,
1943
1955
(
2021
).
35.
M. A.
Budroni
,
E.
Biosa
,
S.
Garroni
,
G. R. C.
Mulas
,
N.
Marchettini
,
N.
Culeddu
, and
M.
Rustici
, “
Understanding oscillatory phenomena in molecular hydrogen generation via sodium borohydride hydrolysis
,”
Phys. Chem. Chem. Phys.
15
,
18664
18670
(
2013
).
36.
M. A.
Budroni
,
S.
Garroni
,
G.
Mulas
, and
M.
Rustici
, “
Bursting dynamics in molecular hydrogen generation via sodium borohydride hydrolysis
,”
J. Phys. Chem. C
121
,
4891
4898
(
2017
).
37.
O.
Hadač
and
I.
Schreiber
, “
Stoichiometric network analysis of the photochemical processes in the mesopause region
,”
Phys. Chem. Chem. Phys.
13
,
1314
1322
(
2011
).
38.
D.
Hochberg
,
R. D.
Bourdon García
,
J. A.
Ágreda Bastidas
, and
J. M.
Ribó
, “
Stoichiometric network analysis of spontaneous mirror symmetry breaking in chemical reactions
,”
Phys. Chem. Chem. Phys.
19
,
17618
17636
(
2017
).
39.
Ž.
Čupić
,
S.
Maćešić
,
K.
Novakovic
,
S.
Anić
, and
L.
Kolar-Anić
, “
Stoichiometric network analysis of a reaction system with conservation constraints
,”
Chaos
28
,
083114
(
2018
).
40.
B.
Von Hohenbalken
,
B. L.
Clarke
, and
J. E.
Lewis
, “
Least distance methods for the frame of homogeneous equation systems
,”
J. Comput. Appl. Math.
19
,
231
241
(
1987
).
41.
R.
Schuster
and
S.
Schuster
, “
Refined algorithm and computer program for calculating all non–negative fluxes admissible in steady states of biochemical reaction systems with or without some flux rates fixed
,”
Bioinformatics
9
,
79
85
(
1993
).
42.
P. E.
Lehner
and
E.
Noma
, “
A new solution to the problem of finding all numerical solutions to ordered metric structures
,”
Psychometrika
45
,
135
137
(
1980
).
43.
B. L.
Clarke
, “
Stoichiometric network analysis
,”
Cell Biophys.
12
,
237
253
(
1988
).
44.
B. D.
Aguda
and
B. L.
Clarke
, “
Bistability in chemical reaction networks: Theory and application to the peroxidase–oxidase reaction
,”
J. Chem. Phys.
87
,
3461
3470
(
1987
).
45.
B. L.
Clarke
and
W.
Jiang
, “
Method for deriving Hopf and saddle-node bifurcation hypersurfaces and application to a model of the Belousov–Zhabotinskii system
,”
J. Chem. Phys.
99
,
4464
4478
(
1993
).
You do not currently have access to this content.