Simulations of colloidal suspensions consisting of mesoscopic particles and smaller species such as ions or depletants are computationally challenging as different length and time scales are involved. Here, we introduce a machine learning (ML) approach in which the degrees of freedom of the microscopic species are integrated out and the mesoscopic particles interact with effective many-body potentials, which we fit as a function of all colloid coordinates with a set of symmetry functions. We apply this approach to a colloid–polymer mixture. Remarkably, the ML potentials can be assumed to be effectively state-independent and can be used in direct-coexistence simulations. We show that our ML method reduces the computational cost by several orders of magnitude compared to a numerical evaluation and accurately describes the phase behavior and structure, even for state points where the effective potential is largely determined by many-body contributions.

1.
S.
Asakura
and
F.
Oosawa
, “
On interaction between two bodies immersed in a solution of macromolecules
,”
J. Chem. Phys.
22
,
1255
1256
(
1954
).
2.
A. P.
Gast
,
C. K.
Hall
, and
W. B.
Russel
, “
Polymer-induced phase separations in nonaqueous colloidal suspensions
,”
J. Colloid Interface Sci.
96
,
251
267
(
1983
).
3.
E. J.
Meijer
and
D.
Frenkel
, “
Computer simulation of polymer-induced clustering of colloids
,”
Phys. Rev. Lett.
67
,
1110
(
1991
).
4.
H. N. W.
Lekkerkerker
,
W. C.-K.
Poon
,
P. N.
Pusey
,
A.
Stroobants
, and
P. B.
Warren
, “
Phase behaviour of colloid + polymer mixtures
,”
Europhys. Lett.
20
,
559
(
1992
).
5.
S. M.
Ilett
,
A.
Orrock
,
W. C. K.
Poon
, and
P. N.
Pusey
, “
Phase behavior of a model colloid-polymer mixture
,”
Phys. Rev. E
51
,
1344
(
1995
).
6.
M.
Dijkstra
,
J. M.
Brader
, and
R.
Evans
, “
Phase behaviour and structure of model colloid-polymer mixtures
,”
J. Phys.: Condens. Matter
11
,
10079
(
1999
).
7.
M.
Dijkstra
, “
Computer simulations of charge and steric stabilised colloidal suspensions
,”
Curr. Opin. Colloid Interface Sci.
6
,
372
382
(
2001
).
8.
M.
Dijkstra
and
R.
van Roij
, “
Entropy-driven demixing in binary hard-core mixtures: From hard spherocylinders towards hard spheres
,”
Phys. Rev. E
56
,
5594
(
1997
).
9.
A.
Buhot
and
W.
Krauth
, “
Numerical solution of hard-core mixtures
,”
Phys. Rev. Lett.
80
,
3787
(
1998
).
10.
V.
Lobaskin
and
P.
Linse
, “
Simulation of an asymmetric electrolyte with charge asymmetry 60:1 using hard-sphere and soft-sphere models
,”
J. Chem. Phys.
111
,
4300
4309
(
1999
).
11.
J.
Liu
and
E.
Luijten
, “
Rejection-free geometric cluster algorithm for complex fluids
,”
Phys. Rev. Lett.
92
,
035504
(
2004
).
12.
R. L. C.
Vink
and
J.
Horbach
, “
Grand canonical Monte Carlo simulation of a model colloid–polymer mixture: Coexistence line, critical behavior, and interfacial tension
,”
J. Chem. Phys.
121
,
3253
3258
(
2004
).
13.
E. P.
Bernard
,
W.
Krauth
, and
D. B.
Wilson
, “
Event-chain Monte Carlo algorithms for hard-sphere systems
,”
Phys. Rev. E
80
,
056704
(
2009
).
14.
M.
Dijkstra
and
D.
Frenkel
, “
Evidence for entropy-driven demixing in hard-core fluids
,”
Phys. Rev. Lett.
72
,
298
(
1994
).
15.
A. Z.
Panagiotopoulos
and
S. K.
Kumar
, “
Large lattice discretization effects on the phase coexistence of ionic fluids
,”
Phys. Rev. Lett.
83
,
2981
(
1999
).
16.
H.
Löwen
,
P. A.
Madden
, and
J.-P.
Hansen
, “
Ab initio description of counterion screening in colloidal suspensions
,”
Phys. Rev. Lett.
68
,
1081
(
1992
).
17.
M.
Fushiki
, “
Molecular-dynamics simulations for charged colloidal dispersions
,”
J. Chem. Phys.
97
,
6700
6713
(
1992
).
18.
R.
Car
and
M.
Parrinello
, “
Unified approach for molecular dynamics and density-functional theory
,”
Phys. Rev. Lett.
55
,
2471
(
1985
).
19.
B. V. R.
Tata
,
M.
Rajalakshmi
, and
A. K.
Arora
, “
Vapor–liquid condensation in charged colloidal suspensions
,”
Phys. Rev. Lett.
69
,
3778
(
1992
).
20.
K.
Ito
,
H.
Yoshida
, and
N.
Ise
, “
Void structure in colloidal dispersions
,”
Science
263
,
66
68
(
1994
).
21.
G. M.
Kepler
and
S.
Fraden
, “
Attractive potential between confined colloids at low ionic strength
,”
Phys. Rev. Lett.
73
,
356
(
1994
).
22.
B. V. R.
Tata
,
E.
Yamahara
,
P. V.
Rajamani
, and
N.
Ise
, “
Amorphous clustering in highly charged dilute poly (chlorostyrene-styrene sulfonate) colloids
,”
Phys. Rev. Lett.
78
,
2660
(
1997
).
23.
A. E.
Larsen
and
D. G.
Grier
, “
Like-charge attractions in metastable colloidal crystallites
,”
Nature
385
,
230
233
(
1997
).
24.
D. G. A. L.
Aarts
,
M.
Schmidt
, and
H. N. W.
Lekkerkerker
, “
Direct visual observation of thermal capillary waves
,”
Science
304
,
847
850
(
2004
).
25.
R. L. C.
Vink
,
J.
Horbach
, and
K.
Binder
, “
Capillary waves in a colloid-polymer interface
,”
J. Chem. Phys.
122
,
134905
(
2005
).
26.
A.
Moussaïd
,
W. C. K.
Poon
,
P. N.
Pusey
, and
M. F.
Soliva
, “
Structure of marginal and fully developed colloidal liquids
,”
Phys. Rev. Lett.
82
,
225
(
1999
).
27.
M.
Vis
,
K. J. H.
Brouwer
,
Á.
González García
,
A. V.
Petukhov
,
O.
Konovalov
, and
R.
Tuinier
, “
Quantification of the structure of colloidal gas–liquid interfaces
,”
J. Phys. Chem. Lett.
11
,
8372
8377
(
2020
).
28.
M.
Dijkstra
,
R.
van Roij
,
R.
Roth
, and
A.
Fortini
, “
Effect of many-body interactions on the bulk and interfacial phase behavior of a model colloid-polymer mixture
,”
Phys. Rev. E
73
,
041404
(
2006
).
29.
H.
Kobayashi
,
P. B.
Rohrbach
,
R.
Scheichl
,
N. B.
Wilding
, and
R. L.
Jack
, “
Correction of coarse-graining errors by a two-level method: Application to the Asakura–Oosawa model
,”
J. Chem. Phys.
151
,
144108
(
2019
).
30.
M.
Rupp
,
A.
Tkatchenko
,
K. R.
Müller
, and
O. A.
Von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
,
058301
(
2012
).
31.
J.
Behler
, “
Perspective: Machine learning potentials for atomistic simulations
,”
J. Chem. Phys.
145
,
170901
(
2016
).
32.
F.
Musil
,
A.
Grisafi
,
A. P.
Bartók
,
C.
Ortner
,
G.
Csányi
, and
M.
Ceriotti
, “
Physics-inspired structural representations for molecules and materials
,”
Chem. Rev.
121
,
9759
9815
(
2021
).
33.
F.
Lo Verso
,
R. L. C.
Vink
,
D.
Pini
, and
L.
Reatto
, “
Critical behavior in colloid-polymer mixtures: Theory and simulation
,”
Phys. Rev. E
73
,
061407
(
2006
).
34.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
35.
E.
Boattini
,
N.
Bezem
,
S. N.
Punnathanam
,
F.
Smallenburg
, and
L.
Filion
, “
Modeling of many-body interactions between elastic spheres through symmetry functions
,”
J. Chem. Phys.
153
,
064902
(
2020
).
36.
S.
Asakura
and
F.
Oosawa
, “
Interaction between particles suspended in solutions of macromolecules
,”
J. Polym. Sci.
33
,
183
192
(
1958
).
37.
A.
Vrij
, “
Polymers at interfaces and the interactions in colloidal dispersions
,”
Pure Appl. Chem.
48
,
471
483
(
1976
).
38.
M.
Dijkstra
and
R.
van Roij
, “
Entropic wetting and many-body induced layering in a model colloid-polymer mixture
,”
Phys. Rev. Lett.
89
,
208303
(
2002
).
39.
J.
Behler
, “
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
,”
J. Chem. Phys.
134
,
074106
(
2011
).
40.

The configurations we use are spaced far enough apart in the number of MC cycles that the particles have had a chance to diffuse significantly between successive snapshots. Even in the high-density fluid phase at ηc = 0.40, the particles travel more than six times their diameters between successive configurations.

41.
J.
Behler
, “
Constructing high-dimensional neural network potentials: A tutorial review
,”
Int. J. Quantum Chem.
115
,
1032
1050
(
2015
).
42.
R. Z.
Khaliullin
,
H.
Eshet
,
T. D.
Kühne
,
J.
Behler
, and
M.
Parrinello
, “
Graphite-diamond phase coexistence study employing a neural-network mapping of the ab initio potential energy surface
,”
Phys. Rev. B
81
,
100103
(
2010
).
43.
H.
Eshet
,
R. Z.
Khaliullin
,
T. D.
Kühne
,
J.
Behler
, and
M.
Parrinello
, “
Microscopic origins of the anomalous melting behavior of sodium under high pressure
,”
Phys. Rev. Lett.
108
,
115701
(
2012
).
44.
V.
Kapil
,
J.
Behler
, and
M.
Ceriotti
, “
High order path integrals made easy
,”
J. Chem. Phys.
145
,
234103
(
2016
).
45.
B.
Cheng
,
J.
Behler
, and
M.
Ceriotti
, “
Nuclear quantum effects in water at the triple point: Using theory as a link between experiments
,”
J. Phys. Chem. Lett.
7
,
2210
2215
(
2016
).
46.
G.
Imbalzano
,
A.
Anelli
,
D.
Giofré
,
S.
Klees
,
J.
Behler
, and
M.
Ceriotti
, “
Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials
,”
J. Chem. Phys.
148
,
241730
(
2018
).
47.
M.
Dijkstra
,
R.
van Roij
, and
R.
Evans
, “
Effective interactions, structure, and isothermal compressibility of colloidal suspensions
,”
J. Chem. Phys.
113
,
4799
4807
(
2000
).
48.
A. A.
Louis
, “
Beware of density dependent pair potentials
,”
J. Phys.: Condens. Matter
14
,
9187
(
2002
).
49.
J. M.
Brader
,
R.
Evans
,
M.
Schmidt
, and
H.
Löwen
, “
Entropic wetting and the fluid–fluid interface of a model colloid-polymer mixture
,”
J. Phys.: Condens. Matter
14
,
L1
(
2001
).
50.
J. M.
Brader
and
R.
Evans
, “
The fluid–fluid interface of a model colloid-polymer mixture
,”
Europhys. Lett.
49
,
678
(
2000
).
51.
E.
Chacón
,
M.
Reinaldo-Falagán
,
E.
Velasco
, and
P.
Tarazona
, “
Layering at free liquid surfaces
,”
Phys. Rev. Lett.
87
,
166101
(
2001
).
52.
G. J.
Gloor
,
G.
Jackson
,
F. J.
Blas
, and
E.
de Miguel
, “
Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials
,”
J. Chem. Phys.
123
,
134703
(
2005
).
53.
C.
Vega
and
E.
De Miguel
, “
Surface tension of the most popular models of water by using the test-area simulation method
,”
J. Chem. Phys.
126
,
154707
(
2007
).
54.
A.
Patti
and
M.
Dijkstra
, “
Do multilayer crystals nucleate in suspensions of colloidal rods?
,”
Phys. Rev. Lett.
102
,
128301
(
2009
).
55.
S. V.
Savenko
and
M.
Dijkstra
, “
Phase behavior of a suspension of colloidal hard rods and nonadsorbing polymer
,”
J. Chem. Phys.
124
,
234902
(
2006
).
56.
G.
Campos-Villalobos
,
M.
Dijkstra
, and
A.
Patti
, “
Nonconventional phases of colloidal nanorods with a soft corona
,”
Phys. Rev. Lett.
126
,
158001
(
2021
).
57.
J.
Henzie
,
M.
Grünwald
,
A.
Widmer-Cooper
,
P. L.
Geissler
, and
P.
Yang
, “
Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices
,”
Nat. Mater.
11
,
131
137
(
2012
).
58.
L.
Rossi
,
V.
Soni
,
D. J.
Ashton
,
D. J.
Pine
,
A. P.
Philipse
,
P. M.
Chaikin
,
M.
Dijkstra
,
S.
Sacanna
, and
W. T. M.
Irvine
, “
Shape-sensitive crystallization in colloidal superball fluids
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
5286
5290
(
2015
).
You do not currently have access to this content.