The SmO+ bond energy has been measured by monitoring the threshold for photodissociation of the cryogenically cooled ion. The action spectrum features a very sharp onset, indicating a bond energy of 5.596 ± 0.004 eV. This value, when combined with the literature value of the samarium ionization energy, indicates that the chemi-ionization reaction of atomic Sm with atomic oxygen is endothermic by 0.048 ± 0.004 eV, which has important implications on the reactivity of Sm atoms released into the upper atmosphere. The SmO+ ion was prepared by electrospray ionization followed by collisional breakup of two different precursors and characterized by the vibrational spectrum of the He-tagged ion. The UV photodissociation threshold is similar for the 10 K bare ion and the He tagged ion, which rules out the possible role of metastable electronically excited states. Reanalysis and remeasurement of previous reaction kinetics experiments that are dependent on D0(SmO+) are included, bringing all experimental results in accord.

1.
J. M.
Holmes
,
R. A.
Dressler
,
T. R.
Pedersen
,
R. G.
Caton
, and
D.
Miller
, “
A combined spectroscopic and plasma chemical kinetic analysis of ionospheric samarium releases
,”
Radio Sci.
52
,
521
538
, (
2017
).
2.
S. G.
Ard
,
N. S.
Shuman
,
O.
Martinez
,
M. T.
Brumbach
, and
A. A.
Viggiano
, “
Kinetics of chemi-ionization reactions of lanthanide metals (Nd, Sm) from 150 to 450 K
,”
J. Chem. Phys.
143
,
204303
(
2015
).
3.
K.
Schofield
, “
An overlooked series of gas phase diatomic metal oxide ions that are long-lived
,”
J. Phys. Chem. A
110
,
6938
6947
(
2006
).
4.
T.
Jayasekharan
,
M. A. N.
Razvi
, and
G. L.
Bhale
, “
Even-parity bound and autoionizing Rydberg series of the samarium atom
,”
J. Phys. B Atom. Mol. Opt. Phys.
33
,
3123
3136
(
2000
).
5.
R. M.
Cox
,
J.
Kim
,
P. B.
Armentrout
,
J.
Bartlett
,
R. A.
VanGundy
,
M. C.
Heaven
,
S. G.
Ard
,
J. J.
Melko
,
N. S.
Shuman
, and
A. A.
Viggiano
, “
Evaluation of the exothermicity of the chemi-ionization reaction Sm + O → SmO+ + e
,”
J. Chem. Phys.
142
,
134307
(
2015
).
6.
D. L.
Hildenbrand
, “
Dissociation-energy of samarium monoxide and its relation to that of europium monoxide
,”
Chem. Phys. Lett.
48
,
340
344
(
1977
).
7.
R. J. M.
Konings
,
O.
Benes
,
A.
Kovacs
,
D.
Manara
,
D.
Sedmidubsky
,
L.
Gorokhov
,
V. S.
Iorish
,
V.
Yungman
,
E.
Shenyavskaya
, and
E.
Osina
, “
The thermodynamic properties of the f-elements and their compounds: Part 2. The lanthanide and actinide oxides
,”
J. Phys. Chem. Ref. Data
43
,
013101
(
2014
).
8.
J. B.
Pedley
and
E. M.
Marshall
, “
Thermochemical data for gaseous monoxides
,”
J. Phys. Chem. Ref. Data
12
,
967
1031
(
1983
).
9.
C. G.
Bailey
,
D. J.
Lavrich
,
D.
Serxner
, and
M. A.
Johnson
, “
Autodetachment from vibrational levels of the O2 A2Πu resonance across its dissociation limit by photoexcitation from O2 X2Πg
,”
J. Chem. Phys.
105
,
1807
(
1996
).
10.
P. A.
Bernhardt
,
C. L.
Siefring
,
S. J.
Briczinski
,
A.
Viggiano
,
R. G.
Caton
,
T. R.
Pedersen
,
J. M.
Holmes
,
S.
Ard
,
N.
Shuman
, and
K. M.
Groves
, “
A physics-based model for the ionization of samarium by the MOSC chemical releases in the upper atmosphere
,”
Radio Sci.
52
,
559
577
, (
2017
).
11.
J. J.
Sorensen
,
E.
Tieu
, and
M. D.
Morse
, “
Bond dissociation energies of lanthanide sulfides and selenides
,”
J. Chem. Phys.
154
,
124307
(
2021
).
12.
L. M.
Russon
,
S. A.
Heidecke
,
M. K.
Birke
,
J.
Conceicao
,
M. D.
Morse
, and
P. B.
Armentrout
, “
Photodissociation measurements of bond-dissociation energies: Ti2+, V2+, Co2+, and Co3+
,”
J. Chem. Phys.
100
,
4747
4755
(
1994
).
13.
J. J.
Sorensen
,
E.
Tieu
, and
M. D.
Morse
, “
Bond dissociation energies of the diatomic late transition metal sulfides: RuS, OsS, CoS, RhS, IrS, and PtS
,”
J. Chem. Phys.
152
,
244305
(
2020
).
14.
J. J.
Sorensen
,
E.
Tieu
,
A.
Sevy
,
D. M.
Merriles
,
C.
Nielson
,
J. C.
Ewigleben
, and
M. D.
Morse
, “
Bond dissociation energies of transition metal oxides: CrO, MoO, RuO, and RhO
,”
J. Chem. Phys.
153
,
074303
(
2020
).
15.
F.
Egidi
,
J. J.
Goings
,
M. J.
Frisch
, and
X.
Li
, “
Direct atomic-orbital-based relativistic two-component linear response method for calculating excited-state fine structures
,”
J. Chem. Theory Comput.
12
,
3711
3718
(
2016
).
16.
T.
Saue
, “
Relativistic Hamiltonians for chemistry: A primer
,”
Chemphyschem
12
,
3077
3094
(
2011
).
17.
W.
Liu
, “
Ideas of relativistic quantum chemistry
,”
Mol. Phys.
108
,
1679
1706
(
2010
).
18.
Z.
Li
,
Y.
Xiao
, and
W.
Liu
, “
On the spin separation of algebraic two-component relativistic Hamiltonians
,”
J. Chem. Phys.
137
,
154114
(
2012
).
19.
P. B.
Armentrout
and
R. M.
Cox
, “
Potential energy surface for the reaction Sm+ + CO2 → SmO+ + CO: Guided ion beam and theoretical studies
,”
Phys. Chem. Chem. Phys.
19
,
11075
11088
(
2017
).
20.
T.
Noro
,
M.
Sekiya
, and
T.
Koga
, “
Segmented contracted basis sets for atoms H through Xe: Sapporo-(DK)-nZP sets (n = D, T, Q)
,”
Theor. Chem. Acc.
131
,
1124
(
2012
).
21.
P. C.
Hariharan
and
J. A.
Pople
, “
Influence of polarization functions on molecular-orbital hydrogenation energies
,”
Theor. Chim. Acta
28
,
213
222
(
1973
).
22.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
, “
Self-consistent molecular-orbital methods: XII. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules
,”
J. Chem. Phys.
56
,
2257
(
1972
).
23.
T.
Clark
,
J.
Chandrasekhar
,
G. W.
Spitznagel
, and
P. V.
Schleyer
, “
Efficient diffuse function-augmented basis sets for anion calculations: III. The 3-21+G basis set for first-row elements, Li–F
,”
J. Comput. Chem.
4
,
294
301
(
1983
).
24.
J. J.
Goings
,
F.
Ding
,
M. J.
Frisch
, and
X.
Li
, “
Stability of the complex generalized Hartree–Fock equations
,”
J. Chem. Phys.
142
,
154109
(
2015
).
25.
J. M.
Kasper
and
X.
Li
, “
Natural transition orbitals for complex two-component excited state calculations
,”
J. Comput. Chem.
41
,
1557
1563
(
2020
).
26.
J. J.
Goings
,
F.
Ding
,
E. R.
Davidson
, and
X.
Li
, “
Approximate singly excited states from a two-component Hartree–Fock reference
,”
J. Chem. Phys.
143
,
144106
(
2015
).
27.
J. J.
Goings
,
M.
Caricato
,
M. J.
Frisch
, and
X.
Li
, “
Assessment of low-scaling approximations to the equation of motion coupled-cluster singles and doubles equations
,”
J. Chem. Phys.
141
,
164116
(
2014
).
28.
R. D.
Johnson
III
, in
NIST Standard Reference Database No. 101, Release 19
, edited by
D. J.
Russell
III (
NIST Computational Chemistry Comparison and Benchmark Database
,
2018
).
29.
M.
Demireva
,
J.
Kim
, and
P. B.
Armentrout
, “
Gadolinium (Gd) oxide, carbide, and carbonyl cation bond energies and evaluation of the Gd + O → GdO+ + e chemi-ionization reaction enthalpy
,”
J. Phys. Chem. A
120
,
8550
8563
(
2016
).
30.
M.
Ghiassee
,
J.
Kim
, and
P. B.
Armentrout
, “
Evaluation of the exothermicity of the chemi-ionization reaction Nd + O → NdO+ + e and neodymium oxide, carbide, dioxide, and carbonyl cation bond energies
,”
J. Chem. Phys.
150
,
144309
(
2019
).
31.
M.
Ghiassee
,
B. C.
Stevenson
, and
P. B.
Armentrout
, “
Evaluation of the Pr + O → PrO+ + e chemi-ionization reaction enthalpy and praseodymium oxide, carbide, dioxide, and carbonyl cation bond energies
,”
Phys. Chem. Chem. Phys.
23
,
2938
2952
(
2021
).
32.
T.
Su
and
W. J.
Chesnavich
, “
Parameterization of the ion-polar molecule collision rate constant by trajectory calculations
,”
J. Chem. Phys.
76
,
5183
5185
(
1982
).
33.
K. M.
Ervin
and
P. B.
Armentrout
, “
Translational energy dependence of Ar+ + XY → ArX+ + Y (XY = H2, D2, HD) from thermal to 30 eV cm
,”
J. Chem. Phys.
83
,
166
189
(
1985
).
34.
P.
Cheng
,
G. K.
Koyanagi
, and
D. K.
Bohme
, “
Gas-phase reactions of atomic lanthanide cations with CO2 and CS2: Room-temperature kinetics and periodicities in reactivity
,”
J. Phys. Chem. A
110
,
12832
12838
(
2006
).
35.
M. W.
Chase
 Jr.
,
NIST-JANAF Thermochemical Tables
. 4th ed. (
American Chemical Society; American Institute of Physics for the National Institute of Standards and Technology
,
Washington DC
,
1998
).
36.
A.
Kramida
,
Y.
Ralchenkko
, and
J.
Reader
, (
2020
) “NIST Atomic SPectra Database” V. 5.8, National Institute of Standards and Technology, Dataset. http://physics.nist.gov/asd.
37.
N. S.
Shuman
,
D. E.
Hunton
, and
A. A.
Viggiano
, “
Ambient and modified atmospheric ion chemistry: From top to bottom
,”
Chem. Rev.
115
,
4542
4570
(
2015
).

Supplementary Material

You do not currently have access to this content.