The shuttling effect is a crucial obstacle to the practical deployment of lithium sulfur batteries (LSBs). This can be ascribed to the generation of lithium polysulfide (LiPS) redox intermediates that are soluble in the electrolyte. The detailed mechanism of the shuttling, including the chemical structures responsible for the loss of effective mass and the dynamics/kinetics of the redox reactions, are not clear so far. To obtain this microscopic information, characterization techniques with high spatial and temporal resolutions are required. Here, we propose that resonance Raman spectroscopy combined with ultrafast broadband pulses is a powerful tool to reveal the mechanism of the shuttling effect. By combining the chemical bond level spatial resolution of resonance Raman and the femtosecond scale temporal resolution of the ultrafast pulses, this novel technique holds the potential of capturing the spectroscopic fingerprints of the LiPS intermediates during the working stages of LSBs. Using ab initio simulations, we show that, in addition to the excitation energy selective enhancement, resonance Raman signals of different LiPS intermediates are also characteristic and distinguishable. These results will facilitate the real-time in situ monitoring of LiPS species and reveal the underlying mechanism of the shuttling effect.

1.
Y.
Liu
,
Y.
Elias
,
J.
Meng
,
D.
Aurbach
,
R.
Zou
,
D.
Xia
, and
Q.
Pang
, “
Electrolyte solutions design for lithium-sulfur batteries
,”
Joule
5
,
2323
(
2021
).
2.
J.
Li
,
Z.
Niu
,
C.
Guo
,
M.
Li
, and
W.
Bao
, “
Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: A review
,”
J. Energy Chem.
54
,
434
451
(
2021
).
3.
T.
Li
,
C.
He
, and
W.
Zhang
, “
A novel porous C4N4 monolayer as a potential anchoring material for lithium–sulfur battery design
,”
J. Mater. Chem. A
7
,
4134
4144
(
2019
).
4.
M.
Zhao
,
B.-Q.
Li
,
X.-Q.
Zhang
,
J.-Q.
Huang
, and
Q.
Zhang
, “
A perspective toward practical lithium–sulfur batteries
,”
ACS Cent. Sci.
6
,
1095
1104
(
2020
).
5.
J.
Tan
,
D.
Liu
,
X.
Xu
, and
L.
Mai
, “
In situ/operando characterization techniques for rechargeable lithium–sulfur batteries: A review
,”
Nanoscale
9
,
19001
19016
(
2017
).
6.
T.
Ould Ely
,
D.
Kamzabek
,
D.
Chakraborty
, and
M. F.
Doherty
, “
Lithium–sulfur batteries: State of the art and future directions
,”
ACS Appl. Energy Mater.
1
,
1783
1814
(
2018
).
7.
H.
Wang
,
X.
Cao
,
W.
Liu
, and
X.
Sun
, “
Research progress of the solid state lithium-sulfur batteries
,”
Front. Energy Res.
7
,
112
(
2019
).
8.
Y.
Hu
,
W.
Chen
,
T.
Lei
,
Y.
Jiao
,
J.
Huang
,
A.
Hu
,
C.
Gong
,
C.
Yan
,
X.
Wang
, and
J.
Xiong
, “
Strategies toward high-loading lithium–sulfur battery
,”
Adv. Energy Mater.
10
,
2000082
(
2020
).
9.
P.
Bonnick
,
E.
Nagai
, and
J.
Muldoon
, “
Perspective—Lithium-sulfur batteries
,”
J. Electrochem. Soc.
165
,
A6005
A6007
(
2018
).
10.
H.-J.
Peng
,
J.-Q.
Huang
,
X.-B.
Cheng
, and
Q.
Zhang
, “
Review on high-loading and high-energy lithium-sulfur batteries
,”
Adv. Energy Mater.
7
,
1700260
(
2017
).
11.
G.
Li
,
X.
Wang
,
M. H.
Seo
,
M.
Li
,
L.
Ma
,
Y.
Yuan
,
T.
Wu
,
A.
Yu
,
S.
Wang
,
J.
Lu
, and
Z.
Chen
, “
Chemisorption of polysulfides through redox reactions with organic molecules for lithium–sulfur batteries
,”
Nat. Commun.
9
,
705
(
2018
).
12.
K.
Zhu
,
C.
Wang
,
Z.
Chi
,
F.
Ke
,
Y.
Yang
,
A.
Wang
,
W.
Wang
, and
L.
Miao
, “
How far away are lithium-sulfur batteries from commercialization?
,”
Front. Energy Res.
7
,
123
(
2019
).
13.
W.
Ren
,
W.
Ma
,
S.
Zhang
, and
B.
Tang
, “
Recent advances in shuttle effect inhibition for lithium sulfur batteries
,”
Energy Storage Mater.
23
,
707
732
(
2019
).
14.
M.
Yang
,
D.
Shi
,
X.
Sun
,
Y.
Li
,
Z.
Liang
,
L.
Zhang
,
Y.
Shao
,
Y.
Wu
, and
X.
Hao
, “
Shuttle confinement of lithium polysulfides in borocarbonitride nanotubes with enhanced performance for lithium–sulfur batteries
,”
J. Mater. Chem. A
8
,
296
304
(
2020
).
15.
C.
Park
,
A.
Ronneburg
,
S.
Risse
,
M.
Ballauff
,
M.
Kanduč
, and
J.
Dzubiella
, “
Structural and transport properties of Li/S battery electrolytes: Role of the polysulfide species
,”
J. Phys. Chem. C
123
,
10167
10177
(
2019
).
16.
A.
Manthiram
,
Y.
Fu
,
S.-H.
Chung
,
C.
Zu
, and
Y.-S.
Su
, “
Rechargeable lithium–sulfur batteries
,”
Chem. Rev.
114
,
11751
11787
(
2014
).
17.
M.
Hagen
,
P.
Schiffels
,
M.
Hammer
,
S.
Dörfler
,
J.
Tübke
,
M. J.
Hoffmann
,
H.
Althues
, and
S.
Kaskel
, “
In-situ Raman investigation of polysulfide formation in Li-S cells
,”
J. Electrochem. Soc.
160
,
A1205
A1214
(
2013
).
18.
J.-P.
Jones
,
S. C.
Jones
,
F. C.
Krause
,
J.
Pasalic
, and
R.
Bugga
, “
In situ polysulfide detection in lithium sulfur cells
,”
J. Phys. Chem. Lett.
9
,
3751
3755
(
2018
).
19.
Z.
Wang
,
Y.
Tang
,
X.
Fu
,
J.
Wang
,
Z.
Peng
,
L.
Zhang
, and
J.
Huang
, “
In situ imaging polysulfides electrochemistry of Li-S batteries in a hollow carbon nanotubule wet electrochemical cell
,”
ACS Appl. Mater. Interfaces
12
,
55971
55981
(
2020
).
20.
C.
Zech
,
P.
Hönicke
,
Y.
Kayser
,
S.
Risse
,
O.
Grätz
,
M.
Stamm
, and
B.
Beckhoff
, “
Polysulfide driven degradation in lithium–sulfur batteries during cycling—Quantitative and high time-resolution operando X-ray absorption study for dissolved polysulfides probed at both electrode sides
,”
J. Mater. Chem. A
9
,
10231
10239
(
2021
).
21.
Q.
He
,
A. T. S.
Freiberg
,
M. U. M.
Patel
,
S.
Qian
, and
H. A.
Gasteiger
, “
Operando identification of liquid intermediates in lithium–sulfur batteries via transmission UV–vis spectroscopy
,”
J. Electrochem. Soc.
167
,
080508
(
2020
).
22.
C.
Dillard
,
A.
Singh
, and
V.
Kalra
, “
Polysulfide speciation and electrolyte interactions in lithium–sulfur batteries with in situ infrared spectroelectrochemistry
,”
J. Phys. Chem. C
122
,
18195
18203
(
2018
).
23.
N.
Saqib
,
G. M.
Ohlhausen
, and
J. M.
Porter
, “
In operando infrared spectroscopy of lithium polysulfides using a novel spectro-electrochemical cell
,”
J. Power Sources
364
,
266
271
(
2017
).
24.
R. S.
Sánchez-Carrera
and
B.
Kozinsky
, “
Computational Raman spectroscopy of organometallic reaction products in lithium and sodium-based battery systems
,”
Phys. Chem. Chem. Phys.
16
,
24549
24558
(
2014
).
25.
D.
Long
,
The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules
(
John Wiley & Sons Ltd.
,
2002
).
26.
S. A.
Oladepo
,
K.
Xiong
,
Z.
Hong
,
S. A.
Asher
,
J.
Handen
, and
I. K.
Lednev
, “
UV resonance Raman investigations of peptide and protein structure and dynamics
,”
Chem. Rev.
112
,
2604
2628
(
2012
).
27.
H.
Ren
,
J.
Jiang
, and
S.
Mukamel
, “
Deep UV resonance Raman spectroscopy of β-sheet amyloid fibrils: A QM/MM simulation
,”
J. Phys. Chem. B
115
,
13955
13962
(
2011
).
28.
D.
Buhrke
and
P.
Hildebrandt
, “
Probing structure and reaction dynamics of proteins using time-resolved resonance Raman spectroscopy
,”
Chem. Rev.
120
,
3577
3630
(
2020
).
29.
H.
Ren
,
H.
Li
,
Q.
Zhang
,
L.
Liang
,
W.
Guo
,
F.
Huang
,
Y.
Luo
, and
J.
Jiang
, “
A machine learning vibrational spectroscopy protocol for spectrum prediction and spectrum-based structure recognition
,”
Fundam. Res.
1
,
488
494
(
2021
).
30.
S.
Duan
,
G.
Tian
,
Y.
Ji
,
J.
Shao
,
Z.
Dong
, and
Y.
Luo
, “
Theoretical modeling of plasmon-enhanced Raman images of a single molecule with subnanometer resolution
,”
J. Am. Chem. Soc.
137
,
9515
9518
(
2015
).
31.
S.
Duan
,
G.
Tian
, and
Y.
Luo
, “
Visualization of vibrational modes in real space by tip-enhanced non-resonant Raman spectroscopy
,”
Angew. Chem., Int. Ed.
128
,
1053
1057
(
2016
).
32.
F.-F.
Kong
,
X.-J.
Tian
,
Y.
Zhang
,
Y.-J.
Yu
,
S.-H.
Jing
,
Y.
Zhang
,
G.-J.
Tian
,
Y.
Luo
,
J.-L.
Yang
,
Z.-C.
Dong
, and
J. G.
Hou
, “
Probing intramolecular vibronic coupling through vibronic-state imaging
,”
Nat. Commun.
12
,
1280
(
2021
).
33.
H.
Ren
,
J. D.
Biggs
, and
S.
Mukamel
, “
Two-dimensional stimulated ultraviolet resonance Raman spectra of tyrosine and tryptophan: A simulation study
,”
J. Raman Spectrosc.
44
,
544
559
(
2013
).
34.
H.
Ren
,
Z.
Lai
,
J. D.
Biggs
,
J.
Wang
, and
S.
Mukamel
, “
Two-dimensional stimulated resonance Raman spectroscopy study of the Trp-cage peptide folding
,”
Phys. Chem. Chem. Phys.
15
,
19457
(
2013
).
35.
H.
Ren
,
Y.
Zhang
,
S.
Guo
,
N.
Lin
,
L.
Deng
,
T.
Yue
, and
F.
Huang
, “
Identifying Cu(II)–amyloid peptide binding intermediates in the early stages of aggregation by resonance Raman spectroscopy: A simulation study
,”
Phys. Chem. Chem. Phys.
19
,
31103
31112
(
2017
).
36.
B.
Tian
,
S.
Li
,
S.
Lei
,
L.
Lin
,
W.
Guo
, and
H.
Ren
, “
Structural insights of catalytic intermediates in dialumene based CO2 capture: Evidences from theoretical resonance Raman spectra
,”
Chin. Chem. Lett.
32
,
2469
(
2021
).
37.
B.
Tian
,
C.
Cheng
,
T.
Yue
,
N.
Lin
, and
H.
Ren
, “
Chemical identification of the amyloid peptide aggregation-prone Al(III)-peptide complexes by resonance Raman signatures: A computational study
,”
Chem. Phys.
513
,
1
6
(
2018
).
38.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, Gaussian 09, Revision E.01 (
2016
).
39.
A. D.
Becke
, “
Density‐functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
40.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
41.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
11627
(
1994
).
42.
M. J.
Frisch
,
J. A.
Pople
, and
J. S.
Binkley
, “
Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets
,”
J. Chem. Phys.
80
,
3265
3269
(
1984
).
43.
R. L.
Martin
, “
Natural transition orbitals
,”
J. Chem. Phys.
118
,
4775
(
2003
).
44.
S.
Duan
,
G.
Tian
, and
Y.
Luo
, “
Theory for modeling of high resolution resonant and nonresonant Raman images
,”
J. Chem. Theory Comput.
12
,
4986
4995
(
2016
).
45.
H.
Ma
,
J.
Liu
, and
W.
Liang
, “
Time-dependent approach to resonance Raman spectra including Duschinsky rotation and Herzberg–Teller effects: Formalism and its realistic applications
,”
J. Chem. Theory Comput.
8
,
4474
4482
(
2012
).
46.
J. P.
Merrick
,
D.
Moran
, and
L.
Radom
, “
An evaluation of harmonic vibrational frequency scale factors
,”
J. Phys. Chem. A
111
,
11683
11700
(
2007
).
47.
B.
Wang
,
S. M.
Alhassan
, and
S. T.
Pantelides
, “
formation of large polysulfide complexes during the lithium-sulfur battery discharge
,”
Phys. Rev. Appl.
2
,
034004
(
2014
).
48.
Y.
Qie
,
J.
Liu
,
S.
Wang
,
S.
Gong
, and
Q.
Sun
, “
C3B monolayer as an anchoring material for lithium-sulfur batteries
,”
Carbon
129
,
38
44
(
2018
).
49.
L.
Li
,
L.
Chen
,
S.
Mukherjee
,
J.
Gao
,
H.
Sun
,
Z.
Liu
,
X.
Ma
,
T.
Gupta
,
C. V.
Singh
,
W.
Ren
,
H.-M.
Cheng
, and
N.
Koratkar
, “
Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries
,”
Adv. Mater.
29
,
1602734
(
2017
).

Supplementary Material

You do not currently have access to this content.