The properties of semiconductor surfaces can be modified by the deposition of metal clusters consisting of a few atoms. The properties of metal clusters and of cluster-modified surfaces depend on the number of atoms forming the clusters. Deposition of clusters with a monodisperse size distribution thus allows tailoring of the surface properties for technical applications. However, it is a challenge to retain the size of the clusters after their deposition due to the tendency of the clusters to agglomerate. The agglomeration can be inhibited by covering the metal cluster modified surface with a thin metal oxide overlayer. In the present work, phosphine-protected Au clusters, Au9(PPh3)8(NO3)3, were deposited onto RF-sputter deposited TiO2 films and subsequently covered with a Cr2O3 film only a few monolayers thick. The samples were then heated to 200 °C to remove the phosphine ligands, which is a lower temperature than that required to remove thiolate ligands from Au clusters. It was found that the Cr2O3 covering layer inhibited cluster agglomeration at an Au cluster coverage of 0.6% of a monolayer. When no protecting Cr2O3 layer was present, the clusters were found to agglomerate to a large degree on the TiO2 surface.

1.
Y.
Negishi
,
M.
Mizuno
,
M.
Hirayama
,
M.
Omatoi
,
T.
Takayama
,
A.
Iwase
, and
A.
Kudo
, “
Enhanced photocatalytic water splitting by BaLa4Ti4O15 loaded with ∼1 nm gold nanoclusters using glutathione-protected Au25 clusters
,”
Nanoscale
5
,
7188
7192
(
2013
).
2.
Y.
Negishi
,
Y.
Matsuura
,
R.
Tomizawa
,
W.
Kurashige
,
Y.
Niihori
,
T.
Takayama
,
A.
Iwase
, and
A.
Kudo
, “
Controlled loading of small Aun clusters (n = 10–39) onto BaLa4Ti4O15 photocatalysts: Toward an understanding of size effect of cocatalyst on water-splitting photocatalytic activity
,”
J. Phys. Chem. C
119
,
11224
11232
(
2015
).
3.
C.
Wang
,
P.
Lv
,
D.
Xue
,
Y.
Cai
,
X.
Yan
,
L.
Xu
,
J.
Fang
, and
Y.
Yang
, “
Zero-dimensional/two-dimensional Au25(cys)18 nanoclusters/g-C3N4 nanosheets composites for enhanced photocatalytic hydrogen production under visible light
,”
ACS Sustainable Chem. Eng.
6
,
8447
8457
(
2018
).
4.
J. F.
Alvino
,
T.
Bennett
,
D.
Anderson
,
B.
Donoeva
,
D.
Ovoshchnikov
,
R. H.
Adnan
,
D.
Appadoo
,
V.
Golovko
,
G.
Andersson
, and
G. F.
Metha
, “
Far-infrared absorption spectra of synthetically-prepared, ligated metal clusters with Au6, Au8, Au9 and Au6Pd metal cores
,”
RSC Adv.
3
,
22140
22149
(
2013
).
5.
V. D.
Borman
,
M. A.
Pushkin
,
V. N.
Tronin
, and
V. I.
Troyan
, “
Evolution of the electronic properties of transition metal nanoclusters on graphite surface
,”
J. Exp. Theor. Phys.
110
,
1005
1025
(
2010
).
6.
V.
Sudheeshkumar
,
K. O.
Sulaiman
, and
R. W. J.
Scott
, “
Activation of atom-precise clusters for catalysis
,”
Nanoscale Adv.
2
,
55
69
(
2020
).
7.
M.
Valden
,
X.
Lai
, and
D. W.
Goodman
, “
Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties
,”
Science
281
,
1647
(
1998
).
8.
M.
Turner
,
V. B.
Golovko
,
O. P. H.
Vaughan
,
P.
Abdulkin
,
A.
Berenguer-Murcia
,
M. S.
Tikhov
,
B. F. G.
Johnson
, and
R. M.
Lambert
, “
Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters
,”
Nature
454
,
981
983
(
2008
).
9.
L.
Liu
and
A.
Corma
, “
Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles
,”
Chem. Rev.
118
,
4981
5079
(
2018
).
10.
D.-C.
Lim
,
C.-C.
Hwang
,
G.
Ganteför
, and
Y. D.
Kim
, “
Model catalysts of supported Au nanoparticles and mass-selected clusters
,”
Phys. Chem. Chem. Phys.
12
,
15172
15180
(
2010
).
11.
G. G.
Andersson
,
V. B.
Golovko
,
J. F.
Alvino
,
T.
Bennett
,
O.
Wrede
,
S. M.
Mejia
,
H. S.
Al Qahtani
,
R.
Adnan
,
N.
Gunby
, and
D. P.
Anderson
, “
Phosphine-stabilised Au9 clusters interacting with titania and silica surfaces: The first evidence for the density of states signature of the support-immobilised cluster
,”
J. Chem. Phys.
141
,
014702
(
2014
).
12.
L.
Howard-Fabretto
and
G. G.
Andersson
, “
Metal clusters on semiconductor surfaces and application in catalysis with a focus on Au and Ru
,”
Adv. Mater.
32
,
1904122
(
2020
).
13.
W.
Kurashige
,
Y.
Mori
,
S.
Ozaki
,
M.
Kawachi
,
S.
Hossain
,
T.
Kawawaki
,
C. J.
Shearer
,
A.
Iwase
,
G. F.
Metha
,
S.
Yamazoe
et al., “
Activation of water-splitting photocatalysts by loading with ultrafine Rh–Cr mixed-oxide cocatalyst nanoparticles
,”
Angew. Chem., Int. Ed.
59
,
7076
7082
(
2020
).
14.
M.
Qureshi
,
T.
Shinagawa
,
N.
Tsiapis
, and
K.
Takanabe
, “
Exclusive hydrogen generation by electrocatalysts coated with an amorphous chromium-based layer achieving efficient overall water splitting
,”
ACS Sustainable Chem. Eng.
5
,
8079
8088
(
2017
).
15.
N.
Sakamoto
,
H.
Ohtsuka
,
T.
Ikeda
,
K.
Maeda
,
D.
Lu
,
M.
Kanehara
,
K.
Teramura
,
T.
Teranishi
, and
K.
Domen
, “
Highly dispersed noble-metal/chromia (core/shell) nanoparticles as efficient hydrogen evolution promoters for photocatalytic overall water splitting under visible light
,”
Nanoscale
1
,
106
109
(
2009
).
16.
W.
Kurashige
,
R.
Kumazawa
,
D.
Ishii
,
R.
Hayashi
,
Y.
Niihori
,
S.
Hossain
,
L. V.
Nair
,
T.
Takayama
,
A.
Iwase
,
S.
Yamazoe
et al., “
Au25-loaded BaLa4Ti4O15 water-splitting photocatalyst with enhanced activity and durability produced using new chromium oxide shell formation method
,”
J. Phys. Chem. C
122
,
13669
13681
(
2018
).
17.
T.
Kawawaki
,
Y.
Kataoka
,
M.
Hirata
,
Y.
Akinaga
,
R.
Takahata
,
K.
Wakamatsu
,
Y.
Fujiki
,
M.
Kataoka
,
S.
Kikkawa
,
A. S.
Alotabi
 et al, “
Creation of high-performance heterogeneous photocatalysts by controlling ligand desorption and particle size of gold nanocluster
,”
Angew. Chem., Int. Ed.
60
,
21340
(
2021
).
18.
W.
Kurashige
,
R.
Hayashi
,
K.
Wakamatsu
,
Y.
Kataoka
,
S.
Hossain
,
A.
Iwase
,
A.
Kudo
,
S.
Yamazoe
, and
Y.
Negishi
, “
Atomic-level understanding of the effect of heteroatom doping of the cocatalyst on water-splitting activity in AuPd or AuPt alloy cluster-loaded BaLa4Ti4O15
,”
ACS Appl. Energy Mater.
2
,
4175
4187
(
2019
).
19.
K.
Maeda
,
K.
Teramura
,
D.
Lu
,
N.
Saito
,
Y.
Inoue
, and
K.
Domen
, “
Roles of Rh/Cr2O3 (core/shell) nanoparticles photodeposited on visible-light-responsive (Ga1−xZnx)(N1−xOx) solid solutions in photocatalytic overall water splitting
,”
J. Phys. Chem. C
111
,
7554
7560
(
2007
).
20.
M.
Yoshida
,
K.
Takanabe
,
K.
Maeda
,
A.
Ishikawa
,
J.
Kubota
,
Y.
Sakata
,
Y.
Ikezawa
, and
K.
Domen
, “
Role and function of noble-metal/Cr-layer core/shell structure cocatalysts for photocatalytic overall water splitting studied by model electrodes
,”
J. Phys. Chem. C
113
,
10151
10157
(
2009
).
21.
K.
Maeda
,
N.
Sakamoto
,
T.
Ikeda
,
H.
Ohtsuka
,
A.
Xiong
,
D.
Lu
,
M.
Kanehara
,
T.
Teranishi
, and
K.
Domen
, “
Preparation of core–shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light
,”
Chem. - Eur. J.
16
,
7750
7759
(
2010
).
22.
K.
Maeda
,
K.
Teramura
,
D.
Lu
,
T.
Takata
,
N.
Saito
,
Y.
Inoue
, and
K.
Domen
, “
Photocatalyst releasing hydrogen from water
,”
Nature
440
,
295
(
2006
).
23.
K.
Maeda
,
K.
Teramura
,
H.
Masuda
,
T.
Takata
,
N.
Saito
,
Y.
Inoue
, and
K.
Domen
, “
Efficient overall water splitting under visible-light irradiation on (Ga1−xZnx)(N1−xOx) dispersed with Rh–Cr mixed-oxide nanoparticles: Effect of reaction conditions on photocatalytic activity
,”
J. Phys. Chem. B
110
,
13107
13112
(
2006
).
24.
K.
Maeda
,
K.
Teramura
,
D.
Lu
,
T.
Takata
,
N.
Saito
,
Y.
Inoue
, and
K.
Domen
, “
Characterization of Rh–Cr mixed-oxide nanoparticles dispersed on (Ga1−xZnx)(N1−xOx) as a cocatalyst for visible-light-driven overall water splitting
,”
J. Phys. Chem. B
110
,
13753
13758
(
2006
).
25.
K.
Maeda
,
A.
Xiong
,
T.
Yoshinaga
,
T.
Ikeda
,
N.
Sakamoto
,
T.
Hisatomi
,
M.
Takashima
,
D.
Lu
,
M.
Kanehara
,
T.
Setoyama
et al., “
Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light
,”
Angew. Chem., Int. Ed.
49
,
4096
4099
(
2010
).
26.
T.
Takata
,
J.
Jiang
,
Y.
Sakata
,
M.
Nakabayashi
,
N.
Shibata
,
V.
Nandal
,
K.
Seki
,
T.
Hisatomi
, and
K.
Domen
, “
Photocatalytic water splitting with a quantum efficiency of almost unity
,”
Nature
581
,
411
414
(
2020
).
27.
K.
Maeda
,
D.
Lu
, and
K.
Domen
, “
Direct water splitting into hydrogen and oxygen under visible light by using modified TaON photocatalysts with d0 electronic configuration
,”
Chem. - Eur. J.
19
,
4986
4991
(
2013
).
28.
K.
Maeda
and
K.
Domen
, “
Photocatalytic water splitting: Recent progress and future challenges
,”
J. Phys. Chem. Lett.
1
,
2655
2661
(
2010
).
29.
J.
Soldat
,
G. W.
Busser
,
M.
Muhler
, and
M.
Wark
, “
Cr2O3 nanoparticles on Ba5Ta4O15 as a noble-metal-free oxygen evolution Co-catalyst for photocatalytic overall water splitting
,”
ChemCatChem
8
,
153
156
(
2016
).
30.
K. E.
Sanwald
,
T. F.
Berto
,
A.
Jentys
,
D. M.
Camaioni
,
O. Y.
Gutiérrez
, and
J. A.
Lercher
, “
Kinetic coupling of water splitting and photoreforming on SrTiO3-based photocatalysts
,”
ACS Catal.
8
,
2902
2913
(
2018
).
31.
Z.
Li
,
F.
Zhang
,
J.
Han
,
J.
Zhu
,
M.
Li
,
B.
Zhang
,
W.
Fan
,
J.
Lu
, and
C.
Li
, “
Using Pd as a cocatalyst on GaN–ZnO solid solution for visible-light-driven overall water splitting
,”
Catal. Lett.
148
,
933
939
(
2018
).
32.
Q.
Wang
,
M.
Nakabayashi
,
T.
Hisatomi
,
S.
Sun
,
S.
Akiyama
,
Z.
Wang
,
Z.
Pan
,
X.
Xiao
,
T.
Watanabe
,
T.
Yamada
et al., “
Oxysulfide photocatalyst for visible-light-driven overall water splitting
,”
Nat. Mater.
18
,
827
832
(
2019
).
33.
J. A.
Bau
and
K.
Takanabe
, “
Ultrathin microporous SiO2 membranes photodeposited on hydrogen evolving catalysts enabling overall water splitting
,”
ACS Catal.
7
,
7931
7940
(
2017
).
34.
A. A.-O. X.
Garcia-Esparza
,
T. A.-O.
Shinagawa
,
S. A.-O.
Ould-Chikh
,
M.
Qureshi
,
X.
Peng
,
N.
Wei
,
D. H.
Anjum
,
A.
Clo
,
T. C.
Weng
,
D.
Nordlund
 et al, “
An oxygen-insensitive hydrogen evolution catalyst coated by a molybdenum-based layer for overall water splitting
,”
Angew. Chem., Int. Ed.
56
,
5780
(
2017
).
35.
T.
Takata
,
C.
Pan
,
M.
Nakabayashi
,
N.
Shibata
, and
K.
Domen
, “
Fabrication of a core–shell-type photocatalyst via photodeposition of group IV and V transition metal oxyhydroxides: An effective surface modification method for overall water splitting
,”
J. Am. Chem. Soc.
137
,
9627
9634
(
2015
).
36.
M.
Yoshida
,
K.
Maeda
,
D.
Lu
,
J.
Kubota
, and
K.
Domen
, “
Lanthanoid oxide layers on rhodium-loaded (Ga1−xZnx)(N1−xOx) photocatalyst as a modifier for overall water splitting under visible-light irradiation
,”
J. Phys. Chem. C
117
,
14000
14006
(
2013
).
37.
J.
Lu
,
B.
Fu
,
M. C.
Kung
,
G.
Xiao
,
J. W.
Elam
,
H. H.
Kung
, and
P. C.
Stair
, “
Coking-and sintering-resistant palladium catalysts achieved through atomic layer deposition
,”
Science
335
,
1205
1208
(
2012
).
38.
J.
Daughtry
,
A. S.
Alotabi
,
L.
Howard-Fabretto
, and
G. G.
Andersson
, “
Composition and properties of RF-sputter deposited titanium dioxide thin films
,”
Nanoscale Adv.
3
,
1077
1086
(
2021
).
39.
F.
Wen
,
U.
Englert
,
B.
Gutrath
, and
U.
Simon
, “
Crystal structure, electrochemical and optical properties of [Au9(PPh3)8](NO3)3
,”
Eur. J. Inorg. Chem.
2008
,
106
111
.
40.
S.
Ali
,
H.
Granbohm
,
J.
Lahtinen
, and
S.-P.
Hannula
, “
Titania nanotubes prepared by rapid breakdown anodization for photocatalytic decolorization of organic dyes under UV and natural solar light
,”
Nanoscale Res. Lett.
13
,
179
(
2018
).
41.
Ş
Çörekçi
,
K.
Kizilkaya
,
T.
Asar
,
M.
Öztürk
,
M.
Çakmak
, and
S.
Ozcelik
, “
Effects of thermal annealing and film thickness on the structural and morphological properties of titanium dioxide films
,”
Acta Phys. Pol., A
121
,
247
(
2012
).
42.
M.
Chandra Sekhar
,
P.
Kondaiah
,
S. V.
Jagadeesh Chandra
,
G.
Mohan Rao
, and
S.
Uthanna
, “
Substrate temperature influenced physical properties of silicon MOS devices with TiO2 gate dielectric
,”
Surf. Interface Anal.
44
,
1299
1304
(
2012
).
43.
F.
Meng
,
L.
Xiao
, and
Z.
Sun
, “
Thermo-induced hydrophilicity of nano-TiO2 thin films prepared by RF magnetron sputtering
,”
J. Alloys Compd.
485
,
848
852
(
2009
).
44.
D. P.
Anderson
,
J. F.
Alvino
,
A.
Gentleman
,
H. A.
Qahtani
,
L.
Thomsen
,
M. I. J.
Polson
,
G. F.
Metha
,
V. B.
Golovko
, and
G. G.
Andersson
, “
Chemically-synthesised, atomically-precise gold clusters deposited and activated on titania
,”
Phys. Chem. Chem. Phys.
15
,
3917
3929
(
2013
).
45.
D. P.
Anderson
,
R. H.
Adnan
,
J. F.
Alvino
,
O.
Shipper
,
B.
Donoeva
,
J.-Y.
Ruzicka
,
H.
Al Qahtani
,
H. H.
Harris
,
B.
Cowie
, and
J. B.
Aitken
, “
Chemically synthesised atomically precise gold clusters deposited and activated on titania. Part II
,”
Phys. Chem. Chem. Phys.
15
,
14806
14813
(
2013
).
46.
J.-Y.
Ruzicka
,
F.
Abu Bakar
,
C.
Hoeck
,
R.
Adnan
,
C.
McNicoll
,
T.
Kemmitt
,
B. C.
Cowie
,
G. F.
Metha
,
G. G.
Andersson
, and
V. B.
Golovko
, “
Toward control of gold cluster Aggregation on TiO2 via surface treatments
,”
J. Phys. Chem. C
119
,
24465
24474
(
2015
).
47.
H. S.
Al Qahtani
,
K.
Kimoto
,
T.
Bennett
,
J. F.
Alvino
,
G. G.
Andersson
,
G. F.
Metha
,
V. B.
Golovko
,
T.
Sasaki
, and
T.
Nakayama
, “
Atomically resolved structure of ligand-protected Au9 clusters on TiO2 nanosheets using aberration-corrected STEM
,”
J. Chem. Phys.
144
,
114703
(
2016
).
48.
H. S.
Al Qahtani
,
G. F.
Metha
,
R. B.
Walsh
,
V. B.
Golovko
,
G. G.
Andersson
, and
T.
Nakayama
, “
Aggregation behavior of ligand-protected Au9 clusters on sputtered atomic layer deposition TiO2
,”
J. Phys. Chem. C
121
,
10781
10789
(
2017
).
49.
G.
Krishnan
,
H. S.
Al Qahtani
,
J.
Li
,
Y.
Yin
,
N.
Eom
,
V. B.
Golovko
,
G. F.
Metha
, and
G. G.
Andersson
, “
Investigation of ligand-stabilized gold clusters on defect-rich titania
,”
J. Phys. Chem. C
121
,
28007
28016
(
2017
).
50.
W.
Jianjun
and
X.
Qunji
, “
Effects of synthetic additives on the friction and wear properties of a Cr2O3 coating
,”
Wear
176
,
213
216
(
1994
).
51.
A. S.
Alotabi
,
C. T.
Gibson
,
G. F.
Metha
, and
G. G.
Andersson
, “
Investigation of the diffusion of Cr2O3 into different phases of TiO2 upon annealing
,”
ACS Appl. Energy Mater.
4
,
322
330
(
2021
).
52.
J. P.
Wilcoxon
and
P.
Provencio
, “
Etching and aging effects in nanosize Au clusters investigated using high-resolution size-exclusion chromatography
,”
J. Phys. Chem. B
107
,
12949
12957
(
2003
).
53.
H. S.
Al Qahtani
,
R.
Higuchi
,
T.
Sasaki
,
J. F.
Alvino
,
G. F.
Metha
,
V. B.
Golovko
,
R.
Adnan
,
G. G.
Andersson
, and
T.
Nakayama
, “
Grouping and aggregation of ligand protected Au9 clusters on TiO2 nanosheets
,”
RSC Adv.
6
,
110765
110774
(
2016
).

Supplementary Material

You do not currently have access to this content.